关于FPGA在AI芯片中的重要性

人工智能的三大支撑是硬件、算法和数据,其中硬件指的是运行 ai 算法的芯片与相对应的计算平台。在硬件方面,目前主要是使用 gpu 并行计算神经网络,同时,还有 fpga 和 asic 也具有未来异军突起的潜能。gpu (graphics processing unit)称为图形处理器,它是显卡的“心脏”,与 cpu 类似,只不过是一种专门进行图像运算工作的微处理器。
gpu 是专为执行复杂的数学和几何计算而设计的,这些计算是图形渲染所必需的。gpu 在浮点运算、并行计算等部分计算方面可以提供数十倍乃至于上百倍于 cpu 的性能。英伟达公司从 2006 年下半年已经开始陆续推出相关的硬件产品以及软件开发工具,目前是人工智能硬件市场的主导。
gpu 对海量数据并行运算的能力与深度学习需求不谋而合,因此,被最先引入深度学习。2011 年吴恩达教授率先将其应用于谷歌大脑中便取得惊人效果,结果表明,12 颗英伟达的 gpu 可以提供相当于 2000颗 cpu 的深度学习性能。
gpu 作为图像处理器,设计初衷是为了应对图像处理中需要大规模并行计算。因此,其在应用于深度学习算法时,有三个方面的局限性:1.应用过程中无法充分发挥并行计算优势。2.硬件结构固定不具备可编程性。3.运行深度学习算法能效远低于 asic 及 fpga。fpga(field-programmable gate array)称为现场可编程门阵列,用户可以根据自身的需求进行重复编程。与 gpu、cpu 相比,具有性能高、能耗低、可硬件编程的特点。
fpga 比gpu 具有更低的功耗,比 asic 具有更短的开发时间和更低的成本。自 xilinx 在 1984 年创造出 fpga 以来,在通信、医疗、工控和安防等领域占有一席之地,在过去几年也有极高的增长率。而进入了最近两年,由于云计算、高性能计算和人工智能的繁荣,拥有先天优势的 fpga 的关注度更是到达了前所未有的高度。
就目前市场而言,英特尔、ibm、德州仪器、摩托罗拉、飞利浦、东芝、三星等巨头纷纷涉足 fpga,但最成功的是 xilinx 与 altera。这两家公司共占有近 90%的市场份额,专利达到 6000 余项。intel 在 2015 年以 161 亿美元收购了 altera,也是看中 fpga 专用计算能力在人工智能领域的发展。从行业巨头巨头的动作可以看出,由于 fpga 在计算能力和灵活性上大大弥补了 cpu 的短板,未来在深度学习领域,cpu+fpga 的组合将成为重要的发展方向。
fpga也有三类局限:1、基本单元的计算能力有限;2、速度和功耗有待提升;3、fpga 价格较为昂贵。asic(application specific integrated circuit)是一种为专门目的而设计的集成电路。无法重新编程,效能高功耗低,但价格昂贵。
近年来涌现出的类似tpu、npu、vpu、bpu等令人眼花缭乱的各种芯片,本质上都属于asic。asic不同于 gpu 和 fpga 的灵活性,定制化的 asic 一旦制造完成将不能更改,所以初期成本高、开发周期长的使得进入门槛高。目前,大多是具备 ai 算法又擅长芯片研发的巨头参与,如 google 的 tpu。由于完美适用于神经网络相关算法,asic 在性能和功耗上都要优于 gpu 和 fpga,tpu1 是传统 gpu 性能的 14-16 倍,npu 是 gpu 的 118 倍。寒武纪已发布对外应用指令集,预计 asic 将是未来 ai 芯片的核心。
asic 的另一个未来发展是类脑芯片。类脑芯片是基于神经形态工程、借鉴人脑信息处理方式,适于实时处理非结构化信息、具有学习能力的超低功耗芯片,更接近人工智能目标,力图在基本架构上模仿人脑的原理,用神经元和突触的方式替代传统“冯诺依曼”架构体系,使芯片能进行异步、并行、低速和分布式处理的能力,同时具备自主感知、识别和学习能力。ibm 的 northtrue 即属于类脑芯片。目前类脑芯片尚处于初期,距离商业化还存在一段距离,这也是各国正在积极布局的地方。
不同种类的芯片适用于不同的场景。gpu 和 cpu 适合消费和企业级;fpga 更适用于企业用户,尤其是对芯片的可重复配置需求较高的军工和工业电子领域,非常适合在云端数据中心部署;asic 如能达到量产,成本相对 fpga 方案较低,能耗更适用于消费级市场。

具有锐截止特性的有源高通滤波器电路
Amkor收购扇型晶圆级半导体封装厂商NANIUM
博通(Beken)的无线音频SoC发展蓝图
如何解读运放数据规格书
芬兰政府收购诺基亚公司3.3%股权
关于FPGA在AI芯片中的重要性
富威推出 InvenSense、Leadcore、Qualcomm(Summit)、RFMD等相关智能手机解决方案
微软XSX两款新主机面临严重的缺货问题
高通新一代旗舰处理器骁龙855支持5G网络
家电制造数字孪生5G智能工厂可视化系统,加速家电制造产业数字化转型
磁性随机存取存储器(MRAM)制造工艺
LiDAR传感器的1D、2D 或 3D变型
基于FPGA的交流电机驱动器的电流控制器2
2021年我国的扫地机器人市场规模将达到224亿元左右
微星也即将推出自己的非公版显卡:GTX 1080 Ti红龙显卡
如何建立高效的ERP工业车间管理看板
声源定位技术的三大定位原理
深度学习在工业自动化中的优势
基于ATmegal6单片机实现SD2200L的TWI接口设计
华为云发布十大新服务