多数伏在案前敲击键盘的程序员或许都曾憧憬:黑框眼镜、格子衬衫、脚踩凉拖背后的另一番模样的自己。
对于来自纽约的 peter sobot 而言,他的本职工作是通过机器学习系统为 spotify 平台上的用户推荐音乐。但朝九晚五的工作之余,他还是一名鼓手兼音乐人,这也就意味着他需要经常创作各类电子音乐,当然,包括架子鼓等打击乐器在内。
近日,peter sobot 在其博客中写道:“他利用机器学习构建了一款应用程序,无论音频样本是底鼓、军鼓还是其他鼓,其识别准确率高达 87%。”
万万没想到,在工程师的手中,我们可以用机器学习搭建自己的音乐梦想!
需要了解的是,在现代电子音乐制作中,一般都会使用鼓声样片而不是真实的鼓手现场录音的旋律,而这些样片通常以商业性质出售,或者由音乐人免费在网上共享出来。不过,这样的样片却往往很难利用,问题就出在它们的标签和分类方式很难尽如人意。
“每家公司都试图通过创建自己的样片夹专有格式,如 native instrument 的 battery 或 kontakt 格式。两者都使用元数据,并允许用户通过各种标签浏览样片。但这些软件包非常昂贵,且需要学习其任务流程。” peter 写道。
于是,这位被音乐耽误了的工程师决定利用机器学习来尝试解决这一问题。
例如,以下给出的一段音频该如何判断究竟是是底鼓、军鼓、踩镲,还是别的音乐样本?
如果是人类,可以毫不费力地区分出这两种声音,但计算机却需要大量的训练。在机器学习中,这通常被称为分类问题,即机器需要注入数据并对其进行分类。在这其中,通常会涉及特征提取阶段。
peter 指出,人类识别不同的鼓音会从以下几个特征判别:
一是整体文件长度。因为小鼓的声音要比踢鼓的声音持续时间更长,所以比较容易测量。
二是整体响度。实际上,由于电子音乐的大多数样本都是标准化的,这意味着不同样片中的鼓声响度会被调整统一。相反,可以使用“最大”、“中等”、“最小”三种响度以更好地了解响度是如何随时间变化的。
三是频率。如底鼓样片的低频音段会有很多,因其直径长,造成鼓声小而低沉。为了让机器学习算法学会这一点,需要将不同频率范围内的声音响度特征分类。
四是音高。尽管鼓是一款打击乐器,但仍可以调到各种音高。为了量化这种调整,可以采用样本的基频来帮助算法区分低音和高音。
接下来,就开始训练数据了。
据了解,peter 从数万个样本中选取了大概每种乐器 20~30 个样本量,基本分为以下三种类型:一是每种乐器的不同类型的样本,如声学鼓、电子鼓;二是不同来源的音乐样本;三是非鼓声的音乐样本。
然后,他列出了 100 个样本夹,将大概 50 兆字节的样本数据归置于 5 个单独文件夹中,分别是:底鼓、小鼓、军鼓、踩镲、以及其他。
1、执行特征提取
据了解,这个 python 库是由音频分析师 brain mcfee 等人创建的 librosa 。
(附上github上的代码链接:https://github.com/psobot/machine-learning-for-drummers)
2、将提取特征保存在json文件夹中
3、将特征提供给决策树进行训练
以决策树为例,这是一种常见的机器学习算法,并不涉及“神经网络”、“深度学习”的范畴。简言之,决策树是一种以递归方式学习每个特征的阈值并将数据分类的系统。
peter 创建了一个决策树模型classifier.py,其权重由导入的数据通过统计决定。以下为可视化模型:
每个新样本都传递到该决策树中,并对提供的特征进行由上到下的评估。例如,如果新样本为 average_eq_2_10 ≤ -56.77 (如图中的顶部块所示),则决策树将向左移动,然后检查其 fundamental_5 特征。
如果执行 classifier.py ,会呈现两个列表:一是训练准确率(模型预测训练期间出现过的样本的准确率),二是测试准确率(模型预测训练期间未出现过的样本的准确率)。
据了解,peter 分别获得了 100% 和 87% 的准确率。
在他看来,13% 的错误率可能是过度拟合导致,因此,为了避免出现这种可能性,他采取了以下三种方式:
调整算法参数以使其不会太具体。
改变特征计算以便给算法注入更多数据,这部分数据或许对人类来说并不敏感,但在数学上有助于解决分类问题。
添加更多多样化的数据,以便决策树算法可以创建一种更通用的树,前提是现有数据并不完整。
最后,附上这位小哥哥个人照,
众巨头撤出中国市场 西门子却独领风骚
JDD-2018中美日专家同台探讨机器人的未来
升达康持续致力于PCB行业实现智能制造,任重道远
基于Tiger560B VOIP微处理器和串行总线技术实现IP电话的设计
薄膜电容误差对电子产品产生的影响
在工程师的手中,我们可以用机器学习搭建自己的音乐梦想!
翱捷科技成为电鸿操作系统的芯片供应商
苹果iPhone14后壳被透明改造 可看见内部组件
英威腾网能荣获“技术创新”奖
AMD执行长苏姿丰19日会台积、电子5哥
2025年全球机器人市场达2485亿美元 开始向非工业机器人转型
欧洲2030电池路线图雄心勃勃 构成了整个欧盟电池制造价值链
苹果发布iOS12.4.1正式版 提供重要的安全性和稳定性更新
介绍五款好用的日志管理工具
降低辐射危险,用AI预测辐射源扩散方向
安徽省加快煤矿井下机器人的应用,推进制造业的发展
美国芯片制造商销售占比近半,制造能力仍集中在亚洲
鲁大师2023年Q1电脑排行:AMD性能狂飙,NVIDIA进退两难,好生热闹!
德州仪器推出新型SafeTI设计软件包
消防中多线和总线的区别