电荷泵的工作原理

电荷泵的工作原理
电荷泵电压反转器是一种dc/dc变换器,它将输入的正电压转换成相应的负电压,即vout= -vin。另外,它也可以把输出电压转换成近两倍的输入电压,即vout≈2vin。由于它是利用电容的充电、放电实现电荷转移的原理构成,所以这种电压反转器电路也称为电荷泵变换器(charge pump converter)。
电荷泵的应用
电荷泵转换器常用于倍压或反压型dc-dc 转换。电荷泵电路采用电容作为储能和传递能量的中介,随着半导体工艺的进步,新型电荷泵电路的开关频率可达1mhz。电荷泵有倍压型和反压型两种基本电路形式。
电荷泵电路主要用于电压反转器,即输入正电压,输出为负电压,电子产品中,往往需要正负电源或几种不同电压供电,对电池供电的便携式产品来说,增加电池数量,必然影响产品的体积及重量。采用电压反转式电路可以在便携式产品中省去一组电池。由于工作频率采用2~3mhz,因此电容容量较小,可采用多层陶瓷电容(损耗小、esr 低),不仅提高效率及降低噪声,并且减小电源的空间。
虽然有一些dc/dc 变换器除可以组成升压、降压电路外也可以组成电压反转电路,但电荷泵电压反转器仅需外接两个电容,电路最简单,尺寸小,并且转换效率高、耗电少,所以它获得了极其广泛的应用。
目前不少集成电路采用单电源工作,简化了电源,但仍有不少电路需要正负电源才能工作。例如,d/a 变换器电路、a/d 变换器电路、v/f或f/v 变换电路、运算放大器电路、电压比较器电路等等。自intersil公司开发出icl7660电压反转器ic后,用它来获得负电源十分简单,90 年代后又开发出带稳压的电压反转电路,使负电源性能更为完善。对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,并且在减少能耗(延长电池寿命)方面起到极大的作用。现在的电荷泵可以输出高达250ma的电流,效率达到75%(平均值)。
电荷泵大多应用在需要电池的系统,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。 便携式电子产品发展神速,对电荷泵变换器提出不同的要求,各半导体器件公司为满足不同的要求开发出一系列新产品,本文将作一个概况介绍。
电荷泵的分类
电荷泵分类
电荷泵可分为:
开关式调整器升压泵,如图1(a)所示。 无调整电容式电荷泵,如图1(b)所示。 可调整电容式电荷泵,如图1(c)所示。
图1 电荷泵的种类
电荷泵工作过程
3 种电荷泵的工作过程均为:首先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。开关式调整器升压泵采用电感器来贮存能量,而电容式电荷泵采用电容器来贮存能量。
电荷泵的结构
电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量。电荷泵是无须电感的,但需要外部电容器。由于工作于较高的频率,因此可使用小型陶瓷电容(1mf),使空间占用小,使用成本低。电荷泵仅用外部电容即可提供±2 倍的输出电压。其损耗主要来自电容器的esr(等效串联电阻)和内部开关晶体管的rds(on)。电荷泵转换器不使用电感,因此其辐射emi可以忽略。输入端噪声可用一只小型电容滤除。它的输出电压是工厂生产精密预置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间。电荷泵十分适用于便携式应用产品的设计。从电容式电荷泵内部结构来看,如图2 所示它实际上是一个片上系统。
图2 电容式电荷泵内部结构
电荷泵工作原理
电荷泵变换器的基本工作原理如图3所示。它由振荡器、反相器及四个模拟开关组成,外接两个电容c1、c2 构成电荷泵电压反转电路。
振荡器输出的脉冲直接控制模拟开关s1及s2;此脉冲经反相器反相后控制s3及s4。当s1、s2 闭合时,s3、s4 断开;s3、s4 闭合时,s1、s2 断开。
当s1、s2 闭合、s3、s4 断开时,输入的正电压v+向c1 充电(上正下负),c1 上的电压为v+;当s3、s4闭合、s1、s2断开时,c1向c2放电(上正下负),c2上充的电压为-vin,即vout=-vin。当振荡器以较高的频率不断控制s1、s2 及s3、s4 的闭合及断开时,输出端可输出变换后的负电压(电压转换率可达99%左右)。
由图3 可知,电荷泵电压反转器并不稳压,即有负载电流时,输出电压将有变化。输出电流与输出电压的变化曲线(输出特性)称为输出特性曲线,其特点是输出电流越大,输出电压变化越大。
一般以输出电阻ro来表示输出电流与输出电压的关系。若输出电流从零增加到io时,输出电压变化为△v,则输出电阻ro 为:
ro = △v/io
输出电阻ro 越小,输出电压变化越小,输出特性越好。
如何选择电荷泵
1、效率优先,兼顾尺寸
如果需要兼顾效率和占用的 pcb 面积大小时,可考虑选用电荷泵。例如电池供电的应用中,效率的提高将直接转变为工作时间的有效延长。通常电荷泵可实现 90% 的峰值效率,更重要的是外围只需少数几个电容器,而不需要功率电感器、续流二极管及 mosfet。这一点对于降低自身功耗,减少尺寸、bom 材料清单和成本等至关重要。
2、输出电流的局限性
电荷泵转换器所能达到的输出负载电流一般低于 300ma,输出电压低于 6v。多用于体积受限、效率要求较高,且具有低成本的场合。换言之,对于 300ma 以下的输出电流和 90% 左右的转换效率,无电感型电荷泵 dc/dc 转换器可视为一种成本经济且空间利用率较高的方式。然而,如果要求输出负载电流、输出电压较大,那么应使用电感开关转换器,同步整流等 dc/dc 转换拓扑。
3、较低的输出纹波和噪声
大多数的电荷泵转换器通过使用一对集成电荷泵环路,工作在相位差为 180 度的情形,这样的好处是最大限度地降低输出电压纹波,从而有效避免因在输出端增加滤波处理而导致的成本增加。而且,与具有相同输出电流的等效电感开关转换器相比,电荷泵产生的噪声更低些。对于 rf 或其它低噪声应用,这一点使其无疑更具竞争优势。
电荷泵选用要点
作为一个设计工程师选用电荷泵时必然会考虑以下几个要素:
转换效率要高
无调整电容式电荷泵 90%
可调整电容式电荷泵 85%
开关式调整器 83% 静态电流要小,可以更省电; 输入电压要低,尽可能利用电池的潜能; 噪音要小,对手机的整体电路无干扰; 功能集成度要高,提高单位面积的使用效率,使手机设计更小巧; 足够的输出调整能力,电荷泵不会因工作在满负荷状态而发烫; 封装尺寸小是手持产品的普遍要求; 安装成本低,包括周边电路占pcb 板面积小,走线少而简单; 具有关闭控制端,可在长时间待机状态下关闭电荷泵,使供电电流消耗近乎为0。 新型电荷泵变换器的特点
80 年代末90 年代初各半导体器件厂生产的电荷泵变换器是以icl7660为基础开发出一些改进型产品,如maxim 公司的max1044、telcom 公司的tc1044s、tc7660 和ltc 公司的ltc1044/7660等。这些改进型器件功能与icl7660相同,性能上有改进,管脚排列与icl7660完全相同,可以互换。
这一类器件的缺点是:输出电流小;输出电阻大;振荡器工作频率低,使外接电容容量大;静态电流大。
90 年代以后,随着半导体工艺技术的进步与便携式电子产品的迅猛发展,各半导体器件公司开发出各种新型电荷泵变换器,它们在器件封装、功能和性能方面都有较大改进,并开发出一些专用的电荷泵变换器。它们的特点可归纳为:
1. 提高输出电流及降低输出电阻
早期产品icl7660在输出40ma时,使-5v 输出电压降为-3v(相差2v),而新型max660输出电流可达100ma,其输出电阻ro仅为6.5ω,max660在输出40ma时,-5v输出电压为-4.74v(相差仅0.26v),即输出特性有较大的提高。max682 的输出电流可达250ma,并且在器件内部增加了稳压电路,即使在250ma 输出时,其输出电压变化也甚小。这种带稳压的产品还有ad 公司的adm8660、lt 公司的lt1054 等。
2. 减小功耗
为了延长电池的寿命或两次充电之间的间隔,要尽可能减小器件的静态电流。近年来,开发出一些微功耗的新产品。icl7660 的静态电流典型值为170μa,新产品tcm828的静态电流典型值为50μa,max1673 的静态电流典型值仅为35μa。另外,为更进一步减小电路的功耗,已开发出能关闭负电源的功能,使器件耗电降到1μa 以下,另外关闭负电源后使部分电路不工作而进一步达到减少功耗的目的。例如,max662a、aic1841 两器件都有关闭功能,在关闭状态时耗电< 1μa,几乎可忽略不计。这一类器件还有tc1121、tc1219、adm660 及adm8828等。
3. 扩大输入电压范围
icl7660电荷泵电路的输入电压范围为1.5~10v,为了满足部分电路对更高负压的需要,已开发出输入电压可达18及20v的新产品,即可转换成-18 或-20v的负电压。例如,tc962、tc7662a 的输出电压范围为3~18v,icl7662、si7661 的输入电压可达20v。
4. 减少占印板的面积
减少电荷泵变换器占印板面积有两种措施:采用贴片或小尺寸封装ic,新产品采用so封装、μmax封装及开发出尺寸更小的sot-23封装;其次是减小外接电容的容量。输出电流一定时,电荷泵变换器的外接电容的容量与振荡器工作频率有关:工作频率越高,电容容量越小。工作频率在几khz到几十khz时,往往需要外接10μf的泵电容;新型器件工作频率已提高到几百khz,个别的甚至到1mhz,其外接泵电容容量可降到1~0.22μf。
icl7660 工作频率为10khz,外接10μf电容;新型tc7660h 的工作频率提高到120khz,其外接泵电容已降为1μf。max1680/1681 的工作频率高达1mhz,在输出电流为125ma 时,外接泵电容仅为1μf。tc1142 工作频率200khz,输出电流20ma 时,外接泵电容仅为0.47μf。max881r 工作频率100khz,输出电流较小,其外接泵电容仅为0.22μf。
若采用sot-23 封装的器件及贴片式电容,则整个电荷泵变换器的面积可做得很小。
5. 输出负电压可设定(调整)
一般的电荷泵变换器的输出负电压vout = -vin,是不可调整的,但新型产品max1673可外接两个电阻r1、r2来设定输出负电压。输出电压vout 与r1、r2 的关系为:
vout = -(r2/r1)vref
式中vref为外接的基准电压。max881r、adp3603~adp3605、aic1840/1841 等都有这种功能。
6. 两种新型的四倍压器件
max662a是一种输入5v 电压输出12v 带稳压的电荷泵变换器,输出电流可达30ma,它用于闪速存储器编程电源(flash memory programming supply)。该器件实际上是经两次倍压(四倍压)后其经稳压后输出。
ltc1502 是另一种工作原理与max662a 相同的四倍压器件(它是lt 公司1999 年一季度推出的新产品)。该器件用一节可充电电池或一节碱性电池就可输出3.3v 稳定的电压。另外,它最低的输入电压为0.9v,可充分利用电池的能量。输出电压精度为3.3v±4%,输出电流为10ma。该器件静态电流仅为40μa,并有关闭电源控制,外围元件仅5 个电容,若采用贴片式电容,整个电源面积小于0.125 平方英寸。

电连接器的分类介绍荐读!
iphone8销量惨淡!库克的采访也让人尴尬!iPhone8外观、配置升级小还是等iPhoneX吧
君正高集成度智能视频处理器T31芯片受到市场高度青睐
新微型化双频带功率放大器模块
辉煌控股力为投资者提供方便快捷的交易服务体验
电荷泵的工作原理
我国发射超级卫星!太空里的“高速超车”,万米高空、茫茫大海随时随地高速上网!厉害了我的国
南麟 日光灯应用 方案
stm32串口接收数据程序
220V转5V120MA交流转直流降压芯片
罗姆开发出业界首创搭载PFC控制功能的高效AC/DC转换器IC
基于工作流技术的发电企业管理信息系统的研究与开发
希捷扩充产品线 推出全新酷鱼固态硬盘
2024年,人形机器人迎来产业化元年
CVPR | 数字文艺复兴:NVIDIA Neuralangelo 研究重构 3D 场景
因特网太贵?“多跳网络”帮你搭建物联网!
智能压力变送器如何改变量程
浅谈贴片电感的作用
DC-DC开关电源管理芯片的设计
分补电容器的元件都有哪些类型