本文介绍了一种无电阻、大于40年动态范围的电流检测解决方案,并描述了一种简单的方法,仅使用齐纳二极管和两个mosfet(场效应晶体管)就可以将其电源电压范围扩大到6v-36v。以max40016为例提供了原理图和测试结果。
测量系统中的电流是监测系统状态的一种基本而有效的工具。随着先进技术的发展,电子或电气系统的物理尺寸大大缩小,降低了功耗和成本,并且在性能方面并没有太多让步。每个电子设备都在监测自己的健康和状态,这些诊断提供了管理系统所需的重要信息,甚至决定了其未来的设计升级。
系统中越来越需要测量大范围电流,从微小电流一直到几安培电流。例如,在以下情况下,确定系统中高动态范围的电流流动或消耗情况:
睡眠/非活跃电流,以确定除正常运行外的总体负载性能和估算电池/电源功率。
ate/测试环境需要处理从微小/低微安培级电流到安培级电流,这就需要进行研发或生产级的测试。
生产车间环境,以发现生产问题(积聚在ic下的焊剂、不必要的焊料短路或开路),以及正常的操作功能测试。
工业设备监测,开启和关闭期间的功耗可显示设备的健康状况,例如,监测设备的正常电流和泄漏电流,以确定其随时间推移的磨损情况。
当前解决方案
图1. 电流检测放大器(csa)+检测电阻
在高达80v的高电压电平(共模电平)应用中,由外部的简单电 流检测放大器(csa)(但为了使结构达到精度和准确性要求,集 成电路的设计比较复杂)和检测电阻器组成的方案可以解决电 流测量时的大多数问题。电流检测放大器目前具有出色的准确 度和精度,满足实现微安级电流的要求,同时保持更好的信噪 比(snr)性能,从而提供系统设计所需的测量分辨率。
然而,为设计人员选择优化的csa并不是一件容易的事情。有一些权衡因素需要考虑(图2):
可用的电源
最小可检测电流(转化为器件的最小输入失调电压(vos))
最大可检测电流(转化为最大输入检测电压(vsense))
rsense上允许的功耗
图2. 使用csa和rsense时要考虑的设计约束
由于差分电压范围由电流检测放大器的选择来设定,因此增加rsense值可以提高较低电流值的测量精度,但在较高的电流下功耗较高,这可能是不可接受的。另外,检测电流的范围也有所降低(imin : imax)。
降低rsense值更有利,因为它减少了电阻的功耗,增大了检测电流范围。降低rsense值可降低信噪比(可以通过计算平均值,取平均输入噪声来改善信噪比)。
应当注意的是,在这种情况下,设备的偏移会影响测量的精度。
通常,会在室温下进行校准,以提高系统精度,通过增加某些系统的测试成本来消除失调电压。
此外,输入差分电压范围(vsense)取决于电源电压或内部/外部基准电压和增益:
在任何实现高电流范围的应用中,目的都是在既定的精度预算下最大限度地扩大动态范围,这一般通过以下公式来估算:
大多数csa的vsense-range通常是100mv,输入失调电压约为10μv。
请注意,如果选择vsense_min作为10xvos系数,则在未校准系统中,最多可得出30年±10%的误差。
同样,如果选择100xvos,则可以达到±1%的误差范围,但动态范围会缩减到20年。因此,在动态范围和精度之间存在一个权衡:收紧精度预算会减少vsense_min所决定的动态范围,反之亦然。
有一点需要注意,在csa + rsense系统中,rsense(容差和温度系数)通常是系统总精度的瓶颈。
与电量计、带集成芯片电阻器的csa、使用运算的差分放大器的分立式器件实现等其它替代方案相比,它简单、可靠且成本合理,仍然是行业中监控/测量系统电流的有效做法。也有更高级别容差和温度系数检测电阻,只是价格比较高。应用在温度范围内的总误差预算需要与rsense产生的误差相当。
无电阻检测解决方案
对于需要测量从几百微安到几安培电流的更高动态范围应用,下方图3所示的集成式电流检测器件(u1)是非常有用、有效的解决方案。该解决方案满足以下条件:
集成式检测元件(无电阻)
超过40年的电流检测动态范围
电流输出功能(与160ω load一起提供0-1v的vout,与所有adc/微控制器电流输入实现方案兼容)。
图3. 带有集成电流检测元件的2.5v至5.5v电流检测系统。
代替外部检流电阻, 在vdd输入和负载(ld)输出之间配置集成检测器件,能够测量100ua至3.3a的系统负载电流(iload)。增益为1/500的内部增益块提供输出电流ish,即
。在ish电流输出和接地间连接一个160ω电阻,可得到0v至1v的vish电压输出。
在负载电流为3a时,检测元件装置上vdd和ld之间的压降约为60mv(曲线图1),相当于仅有180mw的功耗,而在较低的电流值下,观察到的检测100μa范围的总误差在10%左右(曲线图2)。该方案在较高电流负载下功耗较小,在较低电流水平下仍能保持较好的误差预算,优于图1中的传统检测电路。因此,需要更大电流检测范围(最高可达3a)的应用可以从这个方案中受益。
具有扩展线路/输入电压的无电阻检测方案
图4是图3的输入电压范围扩展,其中u1的电源电压现在可以接受更高的线路电压,可高达6v至36v。齐纳二极管(d1)将vdd和pfet(m1)栅极之间的电压维持在5.6v。高压线路的大部分被m1吸收,m1的源电压钳位在与vdd输入电压相差大约4v-4.5v的水平,从而将u1的工作电压(vdd-vss)维持在正常工作范围内(曲线图3)。然后,这个m1的源电压为m2 pfet的栅极电压提供偏置。m2 pfet源电压处于vss (u1) + vth (m2)的水平,确保u1 ish输出在可接受的电压水平内。ish电流输出和r1相对于接地端产生0至1v的输出电压。
图4. 带有集成电流检测元件的6v至36v电流检测系统
参考代号 器件 描述
d1 cmfz4690 5.6v齐纳
m1 bsp322ph6327xtsa1 mosfet p-ch 100v 1a sot-223
m2 bsp322ph6327xtsa1 mosfet p-ch 100v 1a sot-223
u1 max40016anl+ 采用wlp封装的四十年期无电阻csa
实验结果
下面是图4电路的实验结果。
图5:内部检测元件上的压降与负载电流的关系
图6:不同温度下ish输出的增益误差与负载电流的关系
图7:max40016电源电压(vdd-vss)与vline的函数关系
图8. 负载瞬态响应,iload阶跃从0变为3a。
图9. 启动瞬态响应,iload为3a。
结语
通过使用max40016的无电阻检测解决方案,实现了40年期的电流检测解决方案,工作范围扩大到了36v。
蓝牙模块的使用_蓝牙模块小车的制作步骤
互联网企业有那么容易成为吗
2012-2015年存储器产业六大趋势预测
OPPO Reno3 Pro细节透露 在轻薄机身的基础上实现了高性能
用更舒适的佩戴享受音乐感受开放式索尼耳机LinkBuds
扩大40年期电源电压范围,从<300uA到3A无电阻电流检测解决方案
西门子TCP开放式通信协议简单介绍
如何提高5G通讯电源可靠性
解析c++语言的Qt内省机制
AMD成台积电第一大7nm客户 成功超越苹果和海思
未来出行最重要的不一定是无人驾驶
5G芯片和5G模组有哪些已经问世
漏电保护开关原理
超级计算机性能百亿亿次时代开启 SK海力士HBM3为超算加速
IM7587阻抗分析仪介绍
介绍一款基于PoE的互联照明设计
【疫情防控】新冠肺炎疫情常态化管理中的体温检测方法
iphone8什么时候上市?iphone8或存在缺陷?iphone8重新设计发布延期
四川油库反无人机主动防御系统解决库区空域安全防控薄弱问题
电荷放大器频率特性_电荷放大器的特点