手持无线通信设备和遥控设备的普及推动着对模拟、数字和rf混合设计需求的显著增长。手持设备、基站、遥控装置、蓝牙设备、计算机无线通信功能、众多消费电器以及军事/航空航天系统现需要采用rf技术。
数年来,rf设计需要专业设计人员使用专门的设计和分析工具来完成。典型情况下,pcb的rf部分由rf专业人员在独立环境下设计好后,再与混合技术 pcb的其余部分合并在一起的。这一过程的效率很低,而且为了与混合技术整合在一起,常常需要反复设计,还需要用到多个互不相关的数据库。
在过去,设计功能在两个设计环境进行和重复,并通过一个非智能的ascii接口连接。两个环境中的pcb系统设计和rf专门设计系统有它们自己的库、rf设计数据库和设计存档。这就要求两个环境中的设计数据(原理图和版图)和库通过一个繁琐的ascii接口进行管理和同步。
在这一旧的方法下,rf设计师孤立于pcb系统设计中的其他部分进行rf电路的开发。然后该rf电路再利用ascii文件翻译到总体pcb设计中,从而在 主pcb上创建出原理图和物理实现。如果rf电路存在问题,那么设计必须在独立的rf解决方案中修正,然后再重新翻译进主pcb。
rf模拟器只模拟了理想的射频电路。在实际混合系统实现中有许多零碎的地层、地过空和相邻的rf电路,这使得分析变得非常的困难,而且谁都知道这些附加的形状将会对rf电路运作产生长久的影响。
这一旧方法多年来已成功地用于混合信号电路板设计,但随着产品中rf电路含量的增加,两个独立设计系统带来的问题已开始影响设计师的生产力、产品上市时间和产品的质量。
为了解决这些问题,mentor graphics公司已经开发出一种动态链接技术,它可以将pcb原理图和版图工具与rf设计和模拟工具集成在一起,从而产生了一种新的解决方案,它可以克服传统的射频设计的缺点。
rf感知(rf aware)pcb设计
为保持pcb和rf设计间的设计意图,rf设计工具必须理解pcb布局中面向层(layer-oriented)的结构,而pcb系统也必须理解rf设计环境中使用的参数化平面微波元件。
另一个关键问题是,pcb系统将rf电路的版图构建成短路电路,这妨碍了对设计进行正确的设计规则检验(drc)。对当今的复杂rf系统设计来说,功能上的rf感知drc是设计方法学确保设计正确所必须的。
所有这些都对保持设计意图有帮助。保持设计意图非常关键,因为它是实现在工具集间设计数据的多次往返而不丢失信息的基础。
rf设计是个反复的过程,需要采取很多步骤对设计进行调整和优化。过去,在真实的pcb设计背景下,进行rf设计非常困难。当在pcb上实现经过优化的rf模块时,仍无法保证它仍工作在最佳状态。作为一种验证,需要对pcb实现进行电磁场分析(em)。
这个设计流程存在好几个问题。首先,电路被当作简单的金属层几何图形进行模拟,所以rf工具无法对金属层进行修改,无法把经优化的结果回送至pcb设计后仍拥有一个良好的rf电路。其次,em方案很耗时。
在新流程中,因为pcb工具和rf工具对设计意图有共识,所以电路可在工具集间传来送去而不会丢失设计意图。这意味着电路模拟(速度很快)和em分析(当 需要时)可重复进行,且可对每次电路修改的结果进行比对。这一切是在真实pcb环境中完成的,包含了地平面、rf电路的版图、导线、过孔及其它元件。
rf pcb设计瓶颈
rf pcb设计瓶颈主要有以下几个。第一,由于pcb板上的每个rf模块可能已经被一个独立的rf设计小组设计出来,以及每个模块可以独立进行升级、演变和重 利用,因此将整个电路作为一个整体来管理就变得至关重要,但在任何时候仍然把这些模块作为单独的电路元件进行存取。为了解决这个问题,原理图和版图工具必 须扩展,以支持分层分组电路。通过这一方法,即使一个rf电路已经在pcb上布好,它仍然可以作为一个rf电路与其它模块放在一起,并可以连接到适当的 rf设计小组进行分析。
图1:rf pcb 设计瓶颈
下一个障碍是如何设计地平面。在传统的设计流程中,采用rf金属来作为一个黑箱金属块,与地的间隔是手工完成的,因为过空要经过每一个地层。当rf电路更 新后(这是一个频繁的操作),裁掉的部分就必须手动修改以对应新的电路。对某些设计来说,仅这一编辑过程可能就要花几周的时间。
新的综合设计流程
rf设计工具和pcb设计工具之间的综合一直以ascii iff格式文件的双向转换为基础。该格式虽能处理部分设计数据,但还远远没有实现无缝的反复综合。缺少库同步是致命的一个原因。
这种设计需求催生出了一个基于网络的工具间的通信,它在rf设计和系统级pcb设计间提供一个动态双向链接。为支持并行工程处理,多个pcb工程师可同时 使用同一个设计数据库,每人都能链接一个或多个模拟部分。现在,可以采用rf设计工具来设计rf模块并在恰当时候将其综合为系统级原理图和pcb的一部 分,而不再像过去那样仅是个难以琢磨的黑匣子电路。在此阶段,可在任一环境中升级电路并模拟其效果。
将每个rf电路看作一组对象,以帮助维护可追溯性、版本管理和设计问题。因为设计意图得以保全,所以可实施任意多次的设计反复,而没有时间成本。此外,因为可以在真实系统级pcb环境中对rf模块进行模拟,所以应该更详尽地对其功能进行验证以帮助缩短设计周期。
华为推出FusionAccess桌面云解决方案,运维效率提升5倍
宝马或在2014年投产氢燃料电池混动系统
N9020A频谱分析仪的参数测试方法
推想科技发布AI辅助肺部筛查产品,加快诊断治疗进度
TN-2586AA彩电枕形失真
数模电路混合的PCB RF设计新方法
诺基亚状告苹果侵犯其包括芯片组在内32项专利权
跑步耳机哪个牌子性价比高、推荐几款专业跑步耳机
英国电信CEO:今天80%的工作岗位未来可能消失
科创板西部超导监事、财务总监李屹东介绍、履历信息
中国5G基站占全球一半,未来5G发展看中国
比特币区块链与银行系统的主要区别是什么
自驱动水下“气流控”系统 实现微量气体的传输和操控
华为荣耀v9我的速度担当,看速度是如何6得飞起的
小米POCO F3系列新品F3将在4月份前后登场
举例介绍下FFT与PWM的应用
我们该如何给山寨币估值
sim900a定位方法汇总,SIM900A基站定位详解
2012年电子界十大科技产品新鲜出炉:iPhone 5居首
在FPGA开发中尽量避免全局复位的使用?(1)