无线路由器:无线路由器的无线接入功能,就是之前说过的无线局域网(wlan)。目前wlan只有wi-fi这一种主流技术,因此可以认为两者是等同的。
wi-fi由wi-fi联盟进行技术认证和商标授权。实际应用中wi-fi经常被写作wifi或者wifi,但这两种写法并没有被联盟认可。 wi-fi联盟(全称:国际wi-fi联盟组织,英语:wi-fi alliance,简称wfa),是一个 商业联盟 ,拥有 wi-fi的商标。。 它负责wi-fi 认证与商标授权的工作,总部位于美国德克萨斯州 奥斯汀 (austin)。
wi-fi这个朗朗上口的名字被广泛认为是对无线高保真(wireless fidelity)的缩写,实际上是误读。它只是个单纯的名称,并没有实际含义,当然也没有全称。 wi-fi背后的技术标准,则是由美国的电气电子工程师协会(ieee)制定的802.11系列协议。
ieee全称:institute of electrical and electronics enginees
一。 wi-fi协议的发展
从1997年的第一个版本开始,802.11系列协议不断向前演进,经历了802.11a/b/g/n/ac等多个版本,支持的上网速率也不断提升。目前最新的协议版本是802.11ax,也就是近年来迅速发展的wi-fi 6。
ieee 802.11系列标准的发展历程,从第一代到第六代 在最初的很多年里,wi-fi虽然一代代向前发展,但世界上并没有wi-fi几代这样的说法,直接就用802.11后面加几个字母这样的协议编号,对普通用户非常不友好。 直到2018年,wi-fi联盟才决定把下一代技术标准802.11ax用更为简单易懂的wi-fi 6来宣传,上一代的802.11ac和802.11n就顺理成章地成了wi-fi5和wi-fi4。至于更早的技术,反正也没人关注了,也就不用再起马甲了。
wi-fi 6 诞生之后,才有了wi-fi 5的叫法 2019年9月16日,wi-fi联盟宣布启动wi-fi 6认证计划。此后,wi-fi 6的大名响彻了全世界,目前新发布的设备基本都已经支持wi-fi 6了。
二。 wi-fi信道及使用的频段
wi-fi主要工作在2.4ghz和5ghz这两个频段上。这两个频段被称作ism(industrial scientific medical 工业,科学,医学)频段,只要发射功率满足国家标准要求,就可以不用授权直接使用。
不同国家的ism频段有所不同 2.4ghz作为全球最早启用的ism频段,频谱范围是2.40ghz~2.4835ghz,共83.5m带宽。
我们常用的蓝牙,zigbee,无线usb也工作在2.4ghz频段。此外,微波炉和无绳电话使用的频段也是2.4ghz。甚至,有线usb接口的内部芯片在工作时,也会发射2.4ghz的无用信号,造成干扰。
由此可见,2.4ghz上同时工作的设备众多,频段拥挤不堪,干扰严重。当万家灯火,你和楼上楼下的邻居在用wi-fi愉快上网的时候,路由器却在背后默默地挑选信道,协调干扰。
wi-fi把2.4g上的83.5m带宽划分为13个信道,每20m一个。注意这些信道是交叠的,本来只能放下3个,现在却硬生生地挤进去了13个,相互之间的干扰难以避免,只能尽量减轻,大不了大家速度慢一些,排队轮着用。
2.4g频谱及信道(第14信道在国内是不允许使用的) 信道交叠到什么程度呢?由下图可以比较直观地看出,在这些信道里面,只有1,6,11或者2,7,12,或者3,8,13这三组是完全没有交叠的,可见2.4ghz频段的拥堵程度。就好比一条很窄的路,上面通行的车却很多,堵车频频,势必造成通行速度的下降。
2.4g不交叠的信道分布 到了802.11n,用户可以使用40m的信道,但2.4ghz频段依然只有83.5m的总带宽,就只能容纳两个信道了。因此只有在夜深人静网络空闲的时候,单个用户才有可能使用40m信道,加之来自隔壁老王家的干扰,802.11n的高速率很大程度上难以达到。
2.4g 40m带宽信道 如果说2.4ghz频段是羊肠小道的话,5ghz频段无疑就是康庄大道了。 5ghz频段的可用范围是4.910ghz~5.875ghz,有900多m的带宽,是2.4g的10倍还多!这段频谱过于宽了,不同国家根据自身情况,定义了wi-fi可以使用的范围。 比如,在中国5ghz频谱共有13个20m信道可用作wi-fi,连续的20m信道还可以组成40m,80m,甚至160m信道。
中国5g信道分布图 5ghz的带宽大,上面跑的的设备少,用起来自然速度快,干扰小。因此,如果想要家庭网络达到良好的速率体验,可用考虑用5ghz来进行全屋覆盖。 然而尺有所短,寸有所长,5ghz虽然带宽大干扰小,但是信号传播衰减快,还很容易被阻挡,穿墙能力很弱。
2.4g和5g wi-fi信号的穿透损耗 因此,跟2.4ghz相比,5ghz信号通常要弱得多。至于它们到底各能覆盖多少米,这个由于路由器的天线增益,接收灵敏度,家里墙体和障碍物的分布,以及个人期望达到的上网速率都有关联,很难具体给出。
如果仅考虑到家里的各种智能家居的联网,2.4ghz的覆盖和容量通常就够用了。但如果需要高速上网,最大化发挥家庭宽带的价值,就必须依靠5ghz才能实现。
因此,wi-fi的覆盖建议不用考虑2.4ghz,直接以5ghz全屋覆盖作为设计目标。一般情况下单个路由器在家庭的复杂环境下难以实现无死角覆盖,需要考虑多台路由器之间的组网以及漫游问题,这点后面再讲。
三。 wi-fi关键技术
为什么wi-fi的速度越来越快?其实在ieee的802.11系列协议一直在跟3gpp的4g和5g相互借鉴,使用的底层技术都是通用的。
ofdm/ofdma ofdm的全称是正交频分复用。系统会在频域上把载波带宽分割为多个相互正交的子载波,相当于把一条大路划分成了并行多个车道,通行效率自然就大幅提升了。 在wi-fi 5及以前(802.11a/b/g/n/ac),子载波宽度是312.5khz,到了wi-fi 6(802.11ax),子载波宽度缩小为78.125khz,相当于将同样宽度的路划分成了更多的车道。
wi-fi 6的拥有更多的子载波 在ofdm下,每个用户必须同时占用全带宽下的所有子载波。如果某个需要发送的数据没那么多,把频率资源用不满的话,其他用户也没法灵活使用,只能干巴巴地排队等着,频谱资源的使用效率不高。
为了解决这个问题,wi-fi 6引入了ofdma技术,后面多了个字母a,其全称也就变成了正交频分复用多址。多址就是多用户复用的意思。
ofdm vs. ofdma ofdma可以支持多个用户在同一时刻共享所有子载波。相当于运输公司把多个用户的数据统一打包,共同装车,充分利用车厢容量,大家的发货速度就都加快了,频谱效率得以提升。
mimo/波束赋形 路由器上面的天线数量是越来越多,从看不到天线,到一根,两根,三根,四根,六根,八根。。。现在不管啥价钱的路由器,都长得跟螃蟹似的,张牙舞爪好不唬人。
为啥要用这么多天线?就是为了更好地实现mimo(多输入多输出)技术。简单来说,就是在信号发射时,用多根天线来同时发送多路不同的数据,速度自然成倍提升;在接收时,多个天线同时接收手机发来的信号,跟戴了助听器一样,接收灵敏度也得到了增强。
单用户mimo(su-mimo) 如果所有天线同时只为一个用户服务,就叫做单用户mimo(su-mimo)。更进一步,路由器四路发射,手机四路接收,也可以更精细地叫做4x4 mimo。
有时候,路由器的天线众多能力强悍,但四顾茫然,发现手机个个都是弱鸡。路由器能发4路信号,但手机最多只能收两路,最终下来路由器也就不得不配合着只发两路。这不是浪费么?
多用户mimo(mu-mimo) 解决办法也是有的,一个手机的接收天线少,多个手机加起来不就多了?于是,路由器便将多个手机一起考虑,视作一个功能强大的虚拟手机,这样就又能实现高阶mimo了。这种多手机共同参与的mimo就叫做多用户mimo(mu- mimo),又叫虚拟mimo。
除此之外,多个天线还可以通过波束赋形技术,形成指向性的窄波束,对准用户精准覆盖。由于窄波束的能量集中,因此可以覆盖得更远,穿墙效果也能得以提升。
波束赋形 这样看来,路由器的天线个数是多多益善呀,买路由器就一定要挑天线多的吗?这可能是一个陷阱。天线再多,只是在堆一些外部看得见的硬件而已,看起来牛逼闪闪,但内部的设计到底能否支撑这么多天线还是未知数。 更重要的是,不论是mimo,还是波束赋形,都是需要软件算法支撑的,这里面的复杂度远高于硬件,不同厂家算法优化能力不同,可能导致很大的性能差异。
因此,建议在购买路由器时,不用太关注外部到底能看到多少根天线,而要看他们的产品宣传,是否支持波束赋形,4x4mimo,或者mu-mimo?如果厂家在这方面的宣传声势很大,那至少说明他们对这些功能比较自信并将其作为卖点。
调制编码策略(mcs) 调制编码,分为调制和编码两部分,它们共同决定了单位时间可以同时发送的比特数。调制编码策略一般将调制和编码两部分综合起来分为多个等级,级别越高,数据发送的速率也就越快。 调制的作用就是把经过编码的数据(一串0和1的随机组合)映射到前面所说帧结构的最小单元:ofdm符号上。经过调制的信号才能最终发射出去。
bpsk,qpsk,16qam,64qam及256qam星座图 常用的调制方式包括bpsk、qpsk、16qam,64qam和256qam,能同时发送的比特数为1个,2个,4个,6个和8个。wi-fi 6可以支持1024qam,可同时发送10个比特的数据,速率自然大为提升。
256qam和1024qam对比图 可是,原始数据在编码时,为了纠错而加入了很多的冗余比特,真正的有用数据其实只占一部分。我们考虑上网速率时,说的仅仅是有用数据的收发速率,冗余比特都在解码的时候丢弃掉了。 这就要引入码率的概念,也即是有用的数据在编码后总数据量中的占比。如果码率是3/4,就是指编码后的数据中,3/4是有用数据,1/4是后来添加的冗余比特。 不同的调制方式,加上不同的码率,就组成了调制编码策略(mcs)。下表是wi-fi 6中的mcs表,可以看出最高阶mcs为11,对应于1024qam加5/6的码率。
wi-fi 6 的mcs表 正是通过这些技术的不断演进,wi-fi标准一代代向前,速率越来越高,让我们更为畅快地上网。 好了,本期的内容就到这里,希望对大家有所帮助。
无线通信有哪些_无线通信方式
低压差分信号传输模拟交叉点开关SCAN90CP02的特点及应用分析
JEDEC即将发布首个3D IC接口标准
AirPi空气质量传感器的制作
如何快速判断PCB板的好坏
为什么Wi-Fi的速度越来越快?
地下管网水质监测系统
i9-10980XE评测 到底有多强
NVIDIA DRIVE Sim 仿真平台集成禾赛高精度激光雷达
便携式细菌快速检测仪哪个品牌好
Safran助力东方中科完成C-V2X场景仿真测试方案
后起之秀 虽迟未晚!这款轻量云服务器乱拳打死老师傅
关于智能家居生态链业务及合作模式的演讲
零度智控一次性裁员134人,无人机热火猛降?
蓝牙4.0协议详解
BK7256,上海博通Wi-Fi6-音视频芯片性能参数介绍
接下来任天堂的游戏春天将要如何发展?
特斯拉Model Y有望拉动新一轮的动力电池配套
数智赋能 格创东智为中小企业提供“链式”数字化解决方案
迎接世界杯 “万能的小米”推出智能足球