tensorflow是谷歌基于distbelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。tensor(张量)意味着n维数组,flow(流)意味着基于数据流图的计算,tensorflow为张量从流图的一端流动到另一端计算过程。tensorflow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。
tensorflow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构distbelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。tensorflow将完全开源,任何人都可以用。
tensorflow 表达了高层次的机器学习计算,大幅简化了第一代系统,并且具备更好的灵活性和可延展性。tensorflow一大亮点是支持异构设备分布式计算,它能够在各个平台上自动运行模型,从手机、单个cpu / gpu到成百上千gpu卡组成的分布式系统。[1]
从目前的文档看,tensorflow支持cnn、rnn和lstm算法,这都是目前在image,speech和nlp最流行的深度神经网络模型。
facebook torch
torch是一个广泛支持机器学习算法的科学计算框架。易于使用且高效,主要得益于一个简单的和快速的脚本语言luajit,和底层的c / cuda实现:torch | github
核心特征的总结:
一个强大的n维数组
很多实现索引,切片,移调transposing的例程
惊人的通过luajit的c接口
线性代数例程
神经网络,并基于能量的模型
数值优化例程
快速高效的gpu支持
可嵌入,可移植到ios,android和fpga的后台
torch目标是让你通过极其简单过程、最大的灵活性和速度建立自己的科学算法。torch有一个在机器学习领域大型生态社区驱动库包,包括计算机视觉软件包,信号处理,并行处理,图像,视频,音频和网络等,基于lua社区建立。
torch 的核心是流行的神经网络,它使用简单的优化库,同时具有最大的灵活性,实现复杂的神经网络的拓扑结构。你可以建立神经网络和并行任意图,通过cpu和gpu等有效方式。
torch 广泛使用在许多学校的实验室以及在谷歌/ deepmind,推特,nvidia,amd,英特尔和许多其他公司。
facebook开源了他们基于torch的深度学习库包,这个版本包括gpu优化的大卷积网(convnets)模块,以及稀疏网络,这些通常被用在自然语言处理中的应用中。我们的convnet模块包括fft-based卷积层,使用的是建立在nvidia的cufft库上自定义优化的cuda内核。
facebook torch
systemml最初由ibm开发,现在它是apache旗下的一个大数据项目。它提供了一种高度可扩展的平台,可以实施用r或类似python的语法编写的高级运算和算法。企业已经在用它来跟踪汽车维修方面的客户服务,引导机场客流量,或者将社交媒体数据与银行客户联系起来。它可以在spark或hadoop上运行。
DS17887实时时钟芯片的驱动设计与实现
5G套餐将于10月正式公布,移动预约数量领先
组胺快速检测仪器 对肉类食品的检测
环境光传感器有什么用_环境光传感器的作用
杭州市西博会第八届物联网高峰论坛 一场智慧盛宴
人工智能开源框架有哪些
三美电机开发出microSD卡式无线LAN模块
动力电池企业的“生死劫”
关于ADC的优化设计
2023年Automechanika Shanghai圆满落幕!观众人数再创新高,较前纪录增16%
印度禁止银行为加密货币企业提供服务,P2P平台交易解决方案逐渐增多
长征二号F火箭总设计师叫容易 让“天和”带你看太空的日落有多美
用于水下环境实时3D场景重建的单光子激光雷达成像技术
XESS X3无机三原色量子点电视 在技术领先性及成本控制方面取得重大突破
食用油酸价快速检测仪HM-J12的功能介绍
外媒盘点2016年科技突破 之一为人人都能玩转VR
CPU后端和CUDA后端的执行代码和效果
水喷射引导的激光技术
伺服电机抖动原因及处理
鱼虾食品安全快速检测系统的操作原理介绍