单片机RS485通信接口、控制线、原理图及程序教学实例

[前言]rs232 标准是诞生于 rs485 之前的,但是 rs232 有几处不足的地方:接口的信号电平值较高,达到十几 v,使用不当容易损坏接口芯片,电平标准也与ttl 电平不兼容。传输速率有局限,不可以过高,一般到一两百千比特每秒(kb/s)就到极限了。接口使用信号线和 gnd 与其它设备形成共地模式的通信,这种共地模式传输容易产生干扰,并且抗干扰性能也比较弱。传输距离有限,最多只能通信几十米。通信的时候只能两点之间进行通信,不能够实现多机联网通信。针对 rs232 接口的不足,就不断出现了一些新的接口标准,rs485 就是其中之一。 rs232 标准是诞生于 rs485 之前的,但是 rs232 有几处不足的地方:
接口的信号电平值较高,达到十几 v,使用不当容易损坏接口芯片,电平标准也与ttl 电平不兼容。
传输速率有局限,不可以过高,一般到一两百千比特每秒(kb/s)就到极限了。
接口使用信号线和 gnd 与其它设备形成共地模式的通信,这种共地模式传输容易产生干扰,并且抗干扰性能也比较弱。
传输距离有限,最多只能通信几十米。
通信的时候只能两点之间进行通信,不能够实现多机联网通信。
针对 rs232 接口的不足,就不断出现了一些新的接口标准,rs485 就是其中之一,它具备以下的特点:
采用差分信号。我们在讲 a/d 的时候,讲过差分信号输入的概念,同时也介绍了差分输入的好处,最大的优势是可以抑制共模干扰。尤其当工业现场环境比较复杂,干扰比较多时,采用差分方式可以有效的提高通信可靠性。rs485 采用两根通信线,通常用 a 和 b 或者 d+和 d-来表示。逻辑“1”以两线之间的电压差为+(0.2~6)v 表示,逻辑“0”以两线间的电压差为-(0.2~6)v 来表示,是一种典型的差分通信。
rs485 通信速率快,最大传输速度可以达到 10mb/s 以上。
rs485 内部的物理结构,采用的是平衡驱动器和差分接收器的组合,抗干扰能力也大大增加。
传输距离最远可以达到 1200 米左右,但是它的传输速率和传输距离是成反比的,只有在 100kb/s 以下的传输速度,才能达到最大的通信距离,如果需要传输更远距离可以使用中继。
可以在总线上进行联网实现多机通信,总线上允许挂多个收发器,从现有的 rs485芯片来看,有可以挂 32、64、128、256 等不同个设备的驱动器。
rs485 的接口非常简单,与 rs232 所使用的 max232 是类似的,只需要一个 rs485转换器,就可以直接与单片机的 uart 串口连接起来,并且使用完全相同的异步串行通信协议。但是由于 rs485 是差分通信,因此接收数据和发送数据是不能同时进行的,也就是说它是一种半双工通信。那我们如何判断什么时候发送,什么时候接收呢?
rs485 转换芯片很多,这节课我们以典型的 max485 为例讲解 rs485 通信,如图 18-1所示。
图 18-1 max485 硬件接口
max485 是美信(maxim)推出的一款常用 rs485 转换器。其中 5 脚和 8 脚是电源引脚;6脚和 7 脚就是 rs485 通信中的 a 和 b 两个引脚;1 脚和 4 脚分别接到单片机的 rxd 和 txd引脚上,直接使用单片机 uart 进行数据接收和发送;2 脚和 3 脚是方向引脚,其中 2 脚是低电平使能接收器,3 脚是高电平使能输出驱动器,我们把这两个引脚连到一起,平时不发送数据的时候,保持这两个引脚是低电平,让 max485 处于接收状态,当需要发送数据的时候,把这个引脚拉高,发送数据,发送完毕后再拉低这个引脚就可以了。为了提高 rs485 的抗干扰能力,需要在靠近 max485 的 a 和 b 引脚之间并接一个电阻,这个电阻阻值从 100欧到 1k 都是可以。
在这里我们还要介绍一下如何使用 kst-51 单片机开发板进行外围扩展实验。我们的开发板只能把基本的功能给同学们做出来提供实验练习,但是同学们学习的脚步不应该停留在这个实验板上。如果想进行更多的实验,就可以通过单片机开发板的扩展接口进行扩展实验。大家可以看到蓝绿色的单片机座周围有 32 个插针,这 32 个插针就是把单片机的 32 个 io 引脚全部都引出来了。在原理图上体现出来的就是 j4、j5、j6、j7 这 4 个器件,如图 18-2 所示。
图 18-2 单片机扩展接口
这 32 个 io 口中并不是所有的都可以用来对外扩展,其中既作为数据输出,又可以作为数据输入的引脚是不可以用的,比如 p3.2、p3.4、p3.6 引脚,这三个引脚是不可用的。比如p3.2 这个引脚,如果我们用来扩展,发送的信号如果和 ds18b20 的时序吻合,会导致 ds18b20拉低引脚,影响通信。除这 3 个 io 口以外的其它 29 个,都可以使用杜邦线接上插针,扩展出来使用。当然了,如果把当前的 io 口应用于扩展功能了,板子上的相应功能就实现不了了,也就是说需要扩展功能和板载功能之间二选一。
在进行 rs485 实验中,我们通信用的引脚必须是 p3.0 和 p3.1,此外还有一个方向控制引脚,我们使用杜邦线将其连接到 p1.7 上去。rs485 的另外一端,大家可以使用一个 usb转 rs485 模块,用双绞线把开发板和模块上的 a 和 b 分别对应连起来,usb 那头插入电脑,然后就可以进行通信了。
学习了第 13 章实用的串口通信方法和程序后,做这种串口通信的方法就很简单了,基本是一致的。我们使用实用串口通信例程的思路,做了一个简单的程序,通过串口调试助手下发任意个字符,单片机接收到后在末尾添加“回车+换行”符后再送回,在调试助手上重新显示出来,先把程序贴出来。
程序中需要注意的一点是:因为平常都是将 max485 设置为接收状态,只有在发送数据的时候才将 max485 改为发送状态,所以在 uartwrite()函数开头将 max485 方向引脚拉高,函数退出前再拉低。但是这里有一个细节,就是单片机的发送和接收中断产生的时刻都是在停止位的一半上,也就是说每当停止位传送了一半的时候,ri 或 ti 就已经置位并且马上进入中断(如果中断使能的话)函数了,接收的时候自然不会存在问题,但发送的时候就不一样了:当紧接着向 sbuf 写入一个字节数据时,uart 硬件会在完成上一个停止位的发送后,再开始新字节的发送,但如果此时不是继续发送下一个字节,而是已经发送完毕了,要停止发送并将 max485 方向引脚拉低以使 max485 重新处于接收状态时就有问题了,因为这时候最后的这个停止位实际只发送了一半,还没有完全完成,所以就有了 uartwrite()函数内delayx10us(5)这个操作,这是人为的增加了 50us 的延时,这 50us 的时间正好让剩下的一半停止位完成,那么这个时间自然就是由通信波特率决定的了,为波特率周期的一半。
/****************************rs485.c 文件程序源代码*****************************/
纯文本复制
#include
#include
sbit rs485_dir = p1^7; //rs485 方向选择引脚
bit flagframe = 0; //帧接收完成标志,即接收到一帧新数据
bit flagtxd = 0; //单字节发送完成标志,用来替代 txd 中断标志位
unsigned char cntrxd = 0; //接收字节计数器
unsigned char pdata bufrxd[64]; //接收字节缓冲区
extern void uartaction(unsigned char *buf, unsigned char len);
/* 串口配置函数,baud-通信波特率 */
void configuart(unsigned int baud){
rs485_dir = 0; //rs485 设置为接收方向
scon = 0x50; //配置串口为模式 1
tmod &= 0x0f; //清零 t1 的控制位
tmod |= 0x20; //配置 t1 为模式 2
th1 = 256 - (11059200/12/32)/baud; //计算 t1 重载值
tl1 = th1; //初值等于重载值
et1 = 0; //禁止 t1 中断
es = 1; //使能串口中断
tr1 = 1; //启动 t1
}
/* 软件延时函数,延时时间(t*10)us */
void delayx10us(unsigned char t){
do {
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
} while (--t);
}
/* 串口数据写入,即串口发送函数,buf-待发送数据的指针,len-指定的发送长度 */
void uartwrite(unsigned char *buf, unsigned char len){
rs485_dir = 1; //rs485 设置为发送
while (len--){ //循环发送所有字节
flagtxd = 0; //清零发送标志
sbuf = *buf++; //发送一个字节数据
while (!flagtxd); //等待该字节发送完成
}
delayx10us(5); //等待最后的停止位完成,延时时间由波特率决定
rs485_dir = 0; //rs485 设置为接收
}
/* 串口数据读取函数,buf-接收指针,len-指定的读取长度,返回值-实际读到的长度 */
unsigned char uartread(unsigned char *buf, unsigned char len){
unsigned char i;
//指定读取长度大于实际接收到的数据长度时,
//读取长度设置为实际接收到的数据长度
if (len 》 cntrxd){
len = cntrxd;
}
for (i=0; i
*buf++ = bufrxd[i];
}
cntrxd = 0; //接收计数器清零
return len; //返回实际读取长度
}
/* 串口接收监控,由空闲时间判定帧结束,需在定时中断中调用,ms-定时间隔 */
void uartrxmonitor(unsigned char ms){
static unsigned char cntbkp = 0;
static unsigned char idletmr = 0;
if (cntrxd 》 0){ //接收计数器大于零时,监控总线空闲时间
if (cntbkp != cntrxd){ //接收计数器改变,即刚接收到数据时,清零空闲计时
cntbkp = cntrxd;
idletmr = 0;
}else{ //接收计数器未改变,即总线空
}else{ //接收计数器未改变,即总线空闲时,累积空闲时间
if (idletmr 《 30){ //空闲计时小于 30ms 时,持续累加
idletmr += ms;
if (idletmr 》= 30){ //空闲时间达到 30ms 时,即判定为一帧接收完毕
flagframe = 1; //设置帧接收完成标志
}
}
}
}else{
cntbkp = 0;
}
}
/* 串口驱动函数,监测数据帧的接收,调度功能函数,需在主循环中调用 */
void uartdriver(){
unsigned char len;
unsigned char pdata buf[40];
if (flagframe){ //有命令到达时,读取处理该命令
flagframe = 0;
len = uartread(buf, sizeof(buf)-2); //将接收到的命令读取到缓冲区中
uartaction(buf, len); //传递数据帧,调用动作执行函数
}
}
/* 串口中断服务函数 */
void interruptuart() interrupt 4{
if (ri){ //接收到新字节
ri = 0; //清零接收中断标志位
//接收缓冲区尚未用完时,保存接收字节,并递增计数器
if (cntrxd 《 sizeof(bufrxd)){
bufrxd[cntrxd++] = sbuf;
}
}
if (ti){ //字节发送完毕
ti = 0; //清零发送中断标志位
flagtxd = 1; //设置字节发送完成标志
}
}
/*****************************main.c 文件程序源代码******************************/
#include
unsigned char t0rh = 0; //t0 重载值的高字节
unsigned char t0rl = 0; //t0 重载值的低字节
void configtimer0(unsigned int ms);
extern void uartdriver();
extern void configuart(unsigned int baud);
extern void uartrxmonitor(unsigned char ms);
extern void uartwrite(unsigned char *buf, unsigned char len);
void main(){
ea = 1; //开总中断
configtimer0(1); //配置 t0 定时 1ms
configuart(9600); //配置波特率为 9600
while (1){
uartdriver(); //调用串口驱动
}
}
/* 串口动作函数,根据接收到的命令帧执行响应的动作
buf-接收到的命令帧指针,len-命令帧长度 */
void uartaction(unsigned char *buf, unsigned char len){
//在接收到的数据帧后添加换车换行符后发回
buf[len++] = ‘ ’;
buf[len++] = ‘’;
uartwrite(buf, len);
}
/* 配置并启动 t0,ms-t0 定时时间 */
void configtimer0(unsigned int ms){
unsigned long tmp; //临时变量
tmp = 11059200 / 12; //定时器计数频率
tmp = (tmp * ms) / 1000; //计算所需的计数值
tmp = 65536 - tmp; //计算定时器重载值
tmp = tmp + 33; //补偿中断响应延时造成的误差
t0rh = (unsigned char)(tmp》》8); //定时器重载值拆分为高低字节
t0rl = (unsigned char)tmp;
tmod &= 0xf0; //清零 t0 的控制位
tmod |= 0x01; //配置 t0 为模式 1
th0 = t0rh; //加载 t0 重载值
tl0 = t0rl;
et0 = 1; //使能 t0 中断
tr0 = 1; //启动 t0
}
/* t0 中断服务函数,执行串口接收监控 */
void interrupttimer0() interrupt 1{
th0 = t0rh; //重新加载重载值
tl0 = t0rl;
uartrxmonitor(1); //串口接收监控
}
现在看这种串口程序,是不是感觉很简单了呢?串口通信程序我们反反复复的使用,加上随着学习的模块越来越多,实践的越来越多,原先感觉很复杂的东西,现在就会感到简单了。从设备管理器里可以查看所有的 com 口号,我们下载程序用的是 com4,而 usb 转rs485 虚拟的是 com5,通信的时候我们用的是 com5 口,如图 18-3 所示。

别选了!这款华为手机售价1599,但是却比明天即将发布的小米5X更好!
沃尔沃计划明年三月发布旗下第二款纯电动车
吊塔上的主要传感器-倾角传感器
教大家高效率避免OCL电路交越失真
详解二极管的反向恢复过程
单片机RS485通信接口、控制线、原理图及程序教学实例
工业以太网接头接线方法
图像级激光雷达公司Innovusion已获均联智行母公司均胜电子的战略投资
视频监控经常使用怎样的传输方式
我国首条支持5G自动驾驶测试与应用的“智慧高速”公路正式投运
亚马逊推出AI新服务 开发门槛再度降低
三星获得为高通生产下一代5G高端智能手机移动应用处理器订单
华为P1/华为p6/华为p9三款机型回顾
iPhone12相比iPhone11,存在哪些差别之处
无线充电技术—集成式5W无线充电的秘密武器
零点漂移计算方法及公式步骤解析
工信部称今年我国将在若干个城市发放5G临时牌照
我国通信技术试验卫星五号发射成功
51VR自动驾驶仿真训练平台曝光,代表51VR地球克隆计划正式落地?
诚迈科技与鸿蒙生态服务公司签署合作协议,共谋鸿蒙生态创新发展