FPGA设计的高速FIFO电路技术

fpga设计的高速fifo电路技术
本文主要介绍高速fifo电路在数据采集系统中的应用,相关电路主要有高速a/d转换器、fpga、sdram存储器等。图1为本方案的结构框图。在大容量高速采集系统项目的开发过程中,fpga作为可编程逻辑器件,设计灵活、可操作性强,是高速数字电路设计的核心器件。由于fpga内嵌存储器的容量有限,通常不能够满足实际设计电路的需求,需要外接sram、sdram、磁盘阵列等大容量存储设备。
a/d输出的数据流速度快,经过fpga降速后,位数宽,速度仍然很高,不能直接存储到外部存储器。在设计时,要经过fifo缓存,然后才能存储到外部存储器。本设计的fifo容量小、功能强,充分利用了fpga内部fifo电路的特点,结合实际电路,优化了整个电路模型的设计。
异步fifo生成
fifo占用的内存资源为fpga内嵌的block ram,由xilinx公司提供的ise开发平台自动生成。读写时钟有通用时钟和独立时钟可选,我们采用独立时钟,rd_clk和wr_clk独立,为了保证在高速采集时数据不丢失,rd_clk频率不低于wr_clk。fifo读模式采用标准fifo,每次启动采集时都要对fifo进行复位,为异步复位,初始化内部指针和输出寄存器。在fifo生成过程中,我们启用almost_full 和almost_empty选项,以及prog_full 和prog_empty选项,prog_full和prog_empty要进行参数设置,具体设置参数如图2所示。
fifo接口信号定义
根据fifo的生成过程,在图3中给出了读写时钟域的信号定义,所有的在写时钟域的输入信号都必须经过写时钟同步,所有的在读时钟域的输入信号都要经过读时钟同步。信号经过时钟同步后,可以确保在读写过程中不会出现亚稳态,导致读写操作出现错误。
下面对读写时钟域定义信号给予说明:
rst:复位信号,高有效,异步复位,每次启动采集都要首先对fifo进行复位;
wr_clk:写时钟;
wr_en:与写时钟同步;
din:输入数据总线;
rd_clk:读时钟;
dout:输出数据总线;
full:fifo全满标志;
empty:fifo全空标志;
almost_full:高有效,如果为高电平,在写一个数据fifo将全满;
almost_empty:高有效,如果为高电平,在读一个数据fifo将全空;
prog_full:可编程满标志,根据需要,可以设定fifo内部有多少数据,该标志信号有效;
prog_empty:可编程空标志,根据需要,可以设定fifo内部有多少数据,该标志信号有效;
wr_data_count:说明fifo内部已经写了多少数据;
rd_data_count:说明fifo内部有多少数据可以读。
fifo控制电路设计
实际电路设计不考虑读写时钟的频率和相位的异同,读写时钟域的电路基于同步电路设计的理念来进行设计,在设计过程中,满足读时钟频率不低于写时钟频率即可。在图4中给出了fifo控制电路的流程图,下面将对低速传输和高速传输进行详细介绍。
低速采集数据传输过程
在图5给出了低速采集时传输周期时序仿真时序图,在低速采集时,写时钟频率小于读时钟,每次触发长度为fifo长度的一半。采集结束即剩余数据传输的长度不到fifo的一半。根据prog_full的设置,在prog_full有效,同时采集门控信号有效时启动触发请求,由于prog_full为写时钟域信号,必须要经过rd_clk同步,源代码如下:
 process(rd_clk,acq_start_rst)
begin
  if acq_start_rst=’1’then
prog_full_dly<=’0’;
  prog_full_dly1<=’0’;
elsif rd_clk’event and rd_clk=’1’
then
if acq_gate= ’1’ then
prog_full_dly<=prog_full;
prog_full_dly1<=prog_
full_dly;
else
prog_full_dly<=’0’;
  prog_full_dly1<=’0’;
 end if;
end if;
end process;
当fifo半满时触发读请求有效,acq_frame_l为低电平,启动采集数据传输请求,地址和数据同时有效,sdram控制器给出应答信号acq_trdy_l,长度由fifo读写控制电路决定,触发一次的长度为32,即fifo半满的长度,传输完毕,给出传输结束标志信号acq_blast,一次传输周期结束。采集门控信号结束后,fifo剩余数据长度不足32,这时候启动门控结束传递进程,触发结束标志由almost_empty决定,当alomost_empty有效时,停止触发。
高速采集数据传输过程
在高速采集时,读时钟频率等于写时钟频率,当启动触发传输时,触发传输长度为门控信号长度,直到将fifo内部数据传输完毕,触发结束标志由almost_empty决定,当alomost_empty有效时,停止触发传输,触发传输过程如图6所示。
结语
采用高速异步fifo作为数据采集缓存,应用范围十分广泛。特别是在高速数据采集系统中,在外接存储器时,采集数据首先要经过缓存才能存入外部存储器,采用fpga自生成fifo就能够满足要求。本方案充分利用fifo的特点,通过控制电路优化设计,解决了读写时钟的异同问题,提高了电路的工作效率。
参考文献:
[1] john f w. 数字设计原理与实践[m]. 北京:机械工业出版社, 2003
[2] 候伯亨, 顾新. vhdl硬件描述语言与电路设计[m]. 西安:西安电子科技大学出版社, 1997
[3] virtex-5 fpga user guide, xilinx
[4] 雷海卫, 刘俊. fpga中软fifo的设计与实现[j]. 微计算机信息, 2008,24(2):207-209
[5] 于海, 樊晓桠. 基于fpga异步fifo的研究与实现[j]. 微电子学与计算机, 2007,24(3):210-216

为什么要进行无功补偿
简单认识栅极关断晶闸管
74ls290计数器电路大全(六种进制计数器电路)
如何在家居照明系统中添加RGB LED灯带
随着云计算的发展,边缘计算还存在哪些挑战
FPGA设计的高速FIFO电路技术
变电站的分类 变电站与住宅的安全距离
华为V3直接到V6,OecanStor Dorado 为啥子怎么快速?
苹果13pro手机价格和图片
24种常用金属材料及其特性!
商务部部长王文涛就美对华半导体出口管制最终规则等表达关切
什么是顶点着色单元
基于MSP430的心电数字无线遥测系统
多种波形发生器电路图_低频多种波形发生器电路图
UnitedSiC推出具有最低RDS(on)的DFN 8x8格式FET
单片机sbit的含义及用法
5G这么多的基站怎样来建
A6伺服系统的接线与调试
麦瑞半导体推出SY88053CL和SY88063CL限幅后置放大器
2020年的区块链如何跟随趋势的步伐