(文章来源:eeworld)
当脑海中浮现机器人的形象时,您可能会联想到巨大的机械手臂,工厂车间里盘绕的随处可见的线圈和线束,以及四处飞溅的焊接火花。这些机器人与大众文化和科幻小说中描绘的机器人大不相同,在后者中,机器人常以人们日常生活助手的形象示人。
如今,人工智能技术的突破正在推动服务型机器人、无人飞行器和自主驾驶车辆的机器人技术发展,市场规模预计将从 2016 年的 310 亿美元增加到 2020 年的 2370 亿美元。
随着机器人技术的进步,互补传感器技术也在进步。就像人类的五官感觉一样,通过将不同的传感技术结合起来,可在将机器人系统部署到不断变化、不受控制的环境中时取得最佳效果。互补金属氧化物半导体 (cmos) 毫米波 (mmwave) 雷达传感器是机器人感知方面一项相对较新的技术。
机器人传感器技术包括力和扭矩传感器、触摸传感器、一维/二维红外 (ir) 测距仪、三维飞行时间激光雷达传感器、摄像机、惯性测量单元 (imu)、gps 等。cmos 毫米波雷达传感器可精确测量其视野范围内物体的距离以及任何障碍物的相对速度。这些感应技术各有优缺点。
与基于视觉和激光雷达的传感器相比,毫米波传感 器的一个重要优势是不受雨、尘、烟、雾或霜等环境条件影响。此外,毫米波传感器可在完全黑暗中 或在阳光直射下工作。这些传感器可直接安装在无 外透镜、通风口或传感器表面的塑料外壳后,非常 坚固耐用,能满足防护等级 (ip)69k标准。此外, ti的毫米波传感器的体积小、重量轻,生产设计体积是微型激光测距仪的三分之一,重量是其一半。
通过测量机器人平台上车轮或皮带的转动来获得此信息。然而,如果车轮在松散砾石、泥地或湿地等表面上打滑时,这种低成本方法显然无法轻松凑效。更先进的系统可通过增加一个 imu(有时通过 gps 增强)来确保里程计非常精确。毫米波传感器可通过向地面发送线性调频信号并测量返回信号的多普勒频移,
随着机器人在服务能力或在灵活的低批量处理自动化任务中与人类发生更多的交互,必须确保它们不会对与之交互的人造成伤害。在过去,常用方法是在机器人的工作区域周围打造一个安全屏障或排除区域,确保物理隔离。
传感器使虚拟安全幕或气泡能够将机器人操作与非计划的人类交互分开,同时避免机器人与机器人发生由于密度和操作可编程性增加而导致的碰撞。基于视觉的安全系统需要受控制的照明,这会增加能耗、产生热量且需要维护。在尘土飞扬的制造环境(如纺织或地毯编织)中,需要经常清洁和注意透镜。
由于毫米波传感器非常强大,无论车间的照明、湿度、烟雾和灰尘情况如何,都可检测物体,因此它们非常适合取代视觉系统,并且可以极低的处理延迟(通常少于 2ms)下提供这种检测。由于这些传感器视野宽阔且探测距离较长,将其安装在工作区域上方可简化安装过程。只使用一个毫米波传感器即可检测多个物体或人员, 减少所需传感器数量并降低成本。
毫米波雷达传感器可通过模数转换器将射频(rf)前端模拟数据转换为数字表示形式。这种数字转换的数据需要高速外部数据总线,以将数据流引入处理链,然后经过一系列数学运算对在传感器视野范围内检测到的点生成距离、速度和角度信息。由于这些系统通常规模较大且成本高昂,因此 ti 试图将所有这些功能集成到一个单片cmos 器件上,
走在毫米波传感器前面的人会产生多个反射点。可在常用的机器人操作系统可视化 (rviz) 工具中, 将检测到的所有点映射到相对于传感器的三维区域中。此映射会收集四分之一秒内的所有点。收集到的点信息密度可提供高保真度,可清晰看到腿和手臂的运动,因此物体分类算法会将其归类为一个移动的人。三维区域中开放空间的清晰性对于移动机器人来说也是非常重要的数据,可确保它们能够自主操作。
使用iwr1443boostevm检测到的物体点信息,然后就可以演示如何使用毫米波雷达作为唯一的传感器精确地映射房间内的障碍物并在标识的自由空间内进行自主操作。存在几个机器人开源社区,包括robotos(ros)和arduino。为了快速演示如何在映射和导航应用中使用毫米波雷达,我们使用octomap和move_base库将点云信息集成到导航堆栈中。
毫米波传感器最初非常昂贵且尺寸较大,并需要多个分立组件。然而,由于现在ti将射频、处理和内存资源集成到一个单片cmos芯片上,可以说通过对evm实现基本驱动程序(ti_mmwave_rospkg),毫米波传感器将补充或取代已确立的机器人传感技术。
毫米波传感器将补充或取代已确立的机器人传感技术。总之,以下是毫米波传感器与其他技术对比的优势:毫米波传感器对环境条件(如阳光直射、阴影或水的光反射)不敏感。毫米波可检测玻璃墙、隔墙和家具,而基于光的传感解决方案则可能无法做到。毫米波提供物体的多普勒速度信息,这在车轮在潮湿表面打滑时有助于增强机器人里程计。
基于毫米波的传感器机械复杂度较低,从而减少了制造校准和误差校正过程。没有通风口或透镜,它们可直接安装在塑料外壳后。集成校准意味着在线制造复杂性更低。广阔的视野使得不再需要机械旋转传感器机制。ti的高度集成单片cmos毫米波传感器使所有处理都可在传感器内发生。与基于视觉的系统相比,这降低了材料成本、缩小了尺寸并减少了中央控制器处理器每秒所需的百万条指令。
毫米波传感器技术提高了机器人的智能化操作,同时在实际环境中增强了耐用性。这项技术的应用将进一步加快机器人系统的快速采用。
一款比特率极低的高质量语音编解码器
为何光刻机的生意如此好
欧洲现行的能效分级制度将继续发生变化
从操作系统层面解读可穿戴设备
Arm与中国联通合作,将打造全新物联网平台
毫米波雷达传感器在机器人系统中的应用分析
车载音响自动检测播放电路
区块链监管靠其本身完成可能吗
红外点阵温度传感器校准应用
深度图像的获取方法主要有哪些
腾讯发布首个软硬件全自研的多模态四足机器人
直线电机助力索尼推出电动汽车
研究人员发现自动驾驶车辆可将交通流量速度大幅提高40%
店宝宝:鸿蒙发布,万众瞩目!
如何选择空调湿度传感器
2019年前三季度电子信息制造业运行情况分析
距离传感器的应用非常广泛,市场潜力巨大
德州仪器高性能TMS320C66x DSP内核
三星Galaxy Fold二代,配有双后置摄像头价格在845美元左右
“懂行人”合力共建“强富美高”数字经济助力千载金陵的数字一跃