在对阻抗建模时,comsolmultiphysics软件会自动将这些方程转换为频域形式,并围绕给定的电压和电流将方程线性化。
电池在工作时通常会经历很多过程,而这些过程涉及了非常多的参数。如何深入探究电池内部的运行和反应过程?一种便捷的途径是分析电池的阻抗。借助“案例库”中的“锂离子电池阻抗”演示app,我们可以对特定锂离子电池设计中的阻抗进行分析。
阻抗谱:一种实验方法
电化学阻抗谱(eis)是一种广泛应用于电分析领域的技术,其作用是研究电化学系统中的谐波响应。在电池中,它会在两个电极之间电势差的基础之上施加一个小的正弦振荡,并根据阻抗以频域分析得到的电流结果。通常情况下,该扰动应用于开路电压。
在电学分析中,阻抗是一个包含实部和虚部的复数。实部相当于与外加电压同相的电阻;虚部相当于与外加电压呈90°异相的电抗。阻抗的实部和虚部告诉了人们有关电池的动力学、质量传递属性及其电容特性的信息。通过测量一定频率范围内的阻抗,系统中各个物理场的相对影响都可以被表示为特征时间尺度的函数。
如何模拟锂离子电池中的阻抗
发生在锂离子电池内的多个过程展现出了瞬态响应,可以在频域中探测到。下图中的标准锂离子电池由两个多孔电极构成,并且两电极之间带有多孔隔膜,我们可以对以下过程进行解释:活性电极材料表面的电荷转移反应。
➤活性电极材料表面的电荷转移反应。
➤电解质中的质量传递(扩散和迁移)。
➤活性电极材料颗粒内的锂扩散。
➤活性电极材料、电导体和其他表面上双电层电荷的变化。
➤导电材料之间的接触阻抗。
锂离子电池内的过程与材料
在对阻抗建模时,comsolmultiphysics软件会自动将这些方程转换为频域形式,并围绕给定的电压和电流将方程线性化。线性化方法与阻抗数据的谐波解释一致,并且由于使电池电势受到很小的扰动,所以该方法是可行的。
如何理解阻抗数据?
奈奎斯特图是表征系统阻抗的常用方式,图中阻抗的负虚部分量与实部分量分别绘制在y轴和x轴上。单个多孔电极(见上图)的奈奎斯特图通常如下所示。
奈奎斯特图以及不同特性的贡献。
中-高频范围内的半圆形展示了电极内材料表面的双电层充电状况,以及各类不同电阻的贡献。
低频区域出现了一个“尾巴”。尾巴形状主要受电解质和活性电极材料内的扩散情况的影响。本质上讲,它是由扩散系数和电极材料的颗粒大小决定的。在奈奎斯特图中,最左侧点处的阻抗实部可用于测量电池内的离子导电率和电导率。
总而言之,阻抗提供了大量的信息,而模型可以有效地组织和整理这些信息。一种方法是反复调整模型参数,从而准确地找出影响阻抗的因素及对应的频率,如下图所示。
显示了多个参数变化的奈奎斯特图
锂离子电池阻抗仿真app
用于研究的电池单元设计由下列部件组成:
➤多孔阳极:nca(lini0.08co0.15al0.05o2)活性材料、电子导体和粘合剂。
➤多孔阴极:lto(li4ti5o12)活性材料、电子导体和粘合剂。
➤隔膜:celgard2325。
➤电解质:含1.2mlipf6的ec:emc(重量比3:7)。
在电池特性栏中,可以反复修改电极和隔膜的厚度、集流体的面积和电极的初始充电状态;在实验数据栏中,可以导入任何想要研究的阻抗测量数据。
在参数估计栏中,选择要估算的控制参数。可用的参数包括交换电流密度、颗粒中电阻层的电阻率、nca的双电层电容和正极上碳载体的双电层电容。
优化完电池设计后,用户界面如下所示:
锂离子电池阻抗app
双电层是否进行了实质性的充电?活性粒子上的膜阻是否产生了很大的阻抗?电荷转移反应有多快?上述问题都可以利用由参数创建的模型(例如系统的瞬态电池模型)来解答。然后,可以进一步比较不同的电池,或导入另一个(使用时间更长的)电池的阻抗数据。
自动化控制系统分类
手机充电保护器防过充和手机充电器短路保护是指什么?
如何提高电感式传感器的分辨率
集成运算放大器一般由什么组成_集成运算放大器原理
寿命试验的可靠性测试详解
如何研究锂离子电池的阻抗?
电子芯闻早报:英特尔收购Recon,布局可穿戴
Futaba发布0.22mm薄的OLED概念手表
任正非持有1%股份_员工持股98.7%_华为吸引人才的重要手段
一个百分百让城市管廊运维变得轻松的秘诀
节点转换成本升级,摩尔定律将在2014年被打破?
IGBT厂商扩产,APS生产排产帮助企业充分利用设备产能
综合布线系统的常见误区
智能照明产业呈现高速发展趋势 未来前景广阔
RFID走热,设计机会将会激增
精密光纤激光打标机之光纤激光器的优点介绍
三星才发布1.08亿像素手机传感器就出事 张艺兴与三星解约
一种基于嵌入式Internet技术的通用RTU设计,为传统RTU低成本更新开辟一条途径
2018年十大模拟IC供应商 德州仪器继续领跑
LED工程中的简易计算方法