(本文来自电子技术应用chinaaet,作者孙永杰。本文作为转载分享)日前,全球最大的可编程芯片(fpga)厂商赛灵思宣布收购中国 ai 芯片领域的明星创业公司—深鉴科技。此消息一出立即在业内引起了强烈反响。尽管双方认为这是双赢的结局,但我们还是从中看到了当下如日中天的中国ai芯片产业的依附式生存。原因何在?
众所周知,芯片定义了产业链和生态圈的基础计算架构,正如cpu是it产业的核心一样,芯片也是人工智能产业的核心。截止到目前,业界公认的ai主流芯片,除了cpu以外,还有gpu、fpga和asic。而熟悉芯片产业的业内人士看到这些,就知道,所谓现在五花八门的ai芯片最终的基础架构(或者是流派)无非如此,当在上述这些基础架构上,格局已定。
cpu自不用说,英特尔占据着绝对领先的优势,基本在此架构之上突围的可能性微乎其微。
至于gpu,目前全球gpu行业的市场份额有超过70%被英伟达公司占据。而应用在人工智能领域的可进行通用计算的gpu市场则基本被英伟达公司垄断。据悉,世界上目前约有3000多家ai初创公司,大部分都采用了英伟达提供的硬件平台。
再看fpga,虽然其市场前景诱人,但是门槛之高在芯片行业里无出其右。全球有60多家公司先后斥资数十亿美元,前赴后继地尝试登顶fpga高地,其中不乏英特尔、ibm、德州仪器、摩托罗拉、飞利浦、东芝、三星这样的行业巨鳄,但是最终登顶成功的只有位于美国硅谷的四家公司:xilinx(赛灵思)、altera(阿尔特拉)、lattice(莱迪思)、microsemi(美高森美),其中,赛灵思与altera这两家公司共占有近90%的市场份额,专利达到6000余项之多,如此之多的技术专利构成的技术壁垒当然高不可攀。而赛灵思始终保持着全球fpga的霸主地位。
正是由于芯片基础架构格局已定,所谓国内的ai芯片企业(包括初创企业)实际上做得只是基于上述基本架构的二次开发或者优化。
以此次被赛灵思并购的深鉴科技为例,自 2016 年成立以来,深鉴科技就一直基于赛灵思的技术平台开发机器学习解决方案,两家公司合作密切。深鉴科技推出的两个用于深度学习处理器的底层架构—亚里士多德架构和笛卡尔架构的 dpu 产品,都是基于赛灵思 fpga 平台。
另外,由于赛灵思此前是深鉴科技的投资方之一,我们认为深鉴科技更像是为赛灵思fpga做优化的厂商或者或合作伙伴的角色。原因很简单,一旦脱离了赛灵思 fpga 平台,深鉴科技将是无本之木,无水之源。
当然,除了深鉴科技,据称中国另外一家知名ai芯片初创企业地平线的所谓ai芯片bpu也是基于fpga上的二次开发。既然是基于fpga,那么最核心的底层架构就离不开我们上述的赛灵思、阿尔特拉、莱迪思和美高森美fpga平台的借鉴和支持。即便是真的具有核心架构颠覆性的创新,由于fpga已经被这四家企业瓜分,也难有可以维持生存的立足之地。
最会再看asic。在国外大厂几近垄断cpu、gpu和fpga市场的情况下,再加上技术壁垒很高,中国ai芯片厂商在芯片领域一直缺乏关键核心自主技术,仅凭市场、企业单方面的力量难以在cpu、gpu和fpga方面有所突破,只能另辟蹊径。从目前来看,中国ai芯片厂商更多的是以中小公司为主,与实际应用需求结合,集中于设备端的ai asic开发,就某一垂直领域进行优化,以低功耗低成本取胜。例如中国知名的ai芯片初创企业寒武纪就是此类。
这里我们并非说asic在ai芯片领域没有前景,恰恰相反,此前名扬业内的谷歌tpu就是基于asic。不过需要说明的是,谷歌之所以开发tpu,是基于其自身数据中心的应用规模,而规模是决定采用asic效益的关键。
尽管自身庞大应用规模的tpu在业内引起了好评,但谷歌首席科学家greg corrado在此前召开的谷歌ai技术分享会上还是提出了不同的观点,他说,“至少迄今为止,我也没有看到完全不同于传统计算芯片的成功案例。相反,我们认为应对现有的芯片做ai方面专门的优化,使现在的芯片完成ai任务时速度更快,功耗更低,整体的效益更高。”这也是为何谷歌有了tpu,但依然会在其数据中心采用cpu和gpu的原因。言外之意,tpu只是针对数据中心某些应用相对于cpu和gpu的补充和优化,并不能成为主流。
具体到中国,为了规避asic开发周期长和投入大的风险,基于asic开发的所谓ai芯片基本是采取soc+ip的模式,即相比asic,soc+ip模式的上市时间短,成本较低,并且ip可以更灵活地满足用户需求。ip公司专注于ip模块的设计,soc公司则专注于芯片集成,分工合作,提高效率。此前华为麒麟芯片与寒武纪ip结合在智能手机上的应用就属此种模式。但前提是规模(华为手机巨大的出货量)及soc的支持。那么对于中国市场而言,能有多少像华为这样的规模用户。asic独木难成林。
更让asic前景难料的是,业内有一种分析和观点认为,fpga受益于芯片nre费用指数级上升带来的规模效应。随着制程工艺不断提高,芯片nre费用指数级上升,越来越多的asic芯片将由于达不到规模经济而被迫放弃,从而转向直接基于fpga开发设计。
据tractica估计显示,到去年为止,深度学习应用中还几乎找不到fpga的身影,但是,到2025年,它的部署会和cpu的部署量相当(如果不能超过cpu的话)。其结果就是,到2025年,fpga将会在总规模达122亿美金的深度学习芯片组市场获得显著的市场份额。
所谓万变不离其宗。虽然目前ai芯片的叫法五花八门,但依然没有脱离cpu、gpu、fpga和asic这些核心,而在这些核心中,显然仍是那些传统芯片厂商,例如英特尔、英伟达、赛灵思等国外厂商的天下。
而通过此次赛灵思并购深鉴科技,我们看到那些所谓中国的ai芯片企业有相当数量仅是在人家的架构之上再做些二次开发,优化和应用层面的事情,只是换了个新奇的名称和叫法而已,与传统的芯片产业竞争一样,表面锣鼓喧天的中国ai芯片依然是依附性的生
东芝为工控设备提供的九款通过UL 508认证的光继电器资料说明
微处理器温度控制模拟计算阶段功能块
福布斯发布第33期年度全球亿万富豪榜,马化腾进入TOP20的理由是什么?(附名单)
如何使用LED恒流驱动IC和多谐振荡器实现PWM调光控制
轻松清洁房屋,蒸汽拖把好用吗
为什么中国AI芯片产业难改依附式生存?
智慧社区积极对抗疫情 发挥了极其重要的作用
飞兆半导体推出 2MHz、500mA同步降压调节器FAN53
英镑抢手机内幕?小米饥饿营销
大立光为强化竞争力 推出7P及潜望式镜头组
美国法院判高通公司必须授权一些专利给芯片竞争对手
“小众逼格派”SUV中的捷豹F-PACE堪称贵族撩妹神器
FPGA在多进制正交扩频通信系统中的应用
java程序员必须要学习哪些东西
物联网开发最好的选择之一 RTL8915AM IOT模块
群雄逐鹿,各有千秋—智能门锁“芯”浪潮
检测接地电阻读数不准确的分析
FCC颁布新版KDB 447498 DR04射频暴露程序
远程透传网关-V900与三菱FX3U PLC远程上下载监控操作指南
科荣软件与腾讯云将在智慧水务领域开展全面合作