电容在EMC设计中的应用技巧

电容在emc设计中的应用技巧
emc china .com 中国电磁兼容网
在emc设计中,电容是应用最广泛的元件之一,主要用于构成各种低通滤波器或用作去耦电容和旁路电容。大量实践表明:在emc设计中,恰当选择与使用电容,不仅可解决许多emi问题,而且能充分体现效果良好、价格低廉、使用方便的优点。若电容的选择或使用不当,则可能根本达不到预期的目的,甚至会加剧emi程度。
本文根据emc设计原理和不同结构电容的特点,结合相关研究的新进展,针对电容在emc设计中的一些不恰当的认识与做法,讨论了电容在emc设计中的应用技巧。对emc设计具有指导作用。
滤波器结构的选择
emc设计中的滤波器通常指由l,c构成的低通滤波器。不同结构的滤波器的主要区别之一,是其中的电容与电感的联接方式不同。滤波器的有效性不仅与其结构有关,而且还与连接的网络的阻抗有关。如单个电容的滤波器在高阻抗电路中效果很好,而在低阻抗电路中效果很差。 传统上,在滤波器两端的端接阻抗为50欧姆的条件下描述滤波器的特性(这一点往往未被注意),因为这样测试方便,并且是符合射频标准的。
但是,实践中源阻抗zs和负载阻抗zi很复杂,并且在要抑制的频率点上可能是未知的。如果滤波器的一端或两端与电抗性元件相联结,则可能会产生谐振,使某些频率点的插入损耗变为插入增益。
可见,正确选择滤波器的结构至关重要。究竟是选择电容、电感还是两者的组合,是由所谓的最大不匹配原则决定的。简言之,在任何滤波器中,电容两端存在高阻抗,电感两端存在低阻抗。图1是利用最大不匹配原则得到的滤波器的结构与zs和zl的配合关系,每种情形给出了2种结构及相应的衰减斜率(n表示滤波器中电容元件和电感元件的总数)。
但是,如何判定z,和乙的值是高或低,一些资料上并未作具体说明[1,2],实践中也往往不清楚。
zs和zl的所谓的高值或低值的临界选取有一定的随机性,选取50n作为边界值是比较合适的。
顺便指出,在电子电路中,因信号一般较弱,而rc低通滤波器对信号有一定的衰减,故很少使用。
2 自谐振频率与截止频率
2.1 去耦电容的自谐振频率
实际的电容都有寄生电感ls。ls的大小基本上取决于引线的长度,对圆形、导线类型的引线,上'的典型值为10nh/cm[3]。典型的陶瓷电容的引线约有6 mm长,会引入约15nh的电感'。引线电感也可由下式估算[4]:
其中:/和r分别为引线的长度和半径。
寄生电感会与电容产生串联谐振,即自谐振,在自谐振频率fo处,去耦电容呈现的阻抗最小,去耦效果最好。但对频率f高于f/o的噪声成份,去耦电容呈电感性,阻抗随频率的升高而变大,使去耦或旁路作用大大下降。实践中,应根据噪声的最高频率fmax来选择去耦电容的自谐振频率f0,最佳取值为fo=fmax。
但是,一些资料上只是从电容的寄生电感的角度给出了自谐振频率fo的资料。实际上,去耦电容的自谐振频率不仅与电容的寄生电感有关,而且还与过孔的寄生电感[5]、联结去耦电容与芯片电源正负极引脚的印制导线的寄生电感[6.7]等都有关系。如果不注意这一点,查得的资料或自己的估算往往与实际情况相去甚远。
实践中,一般是先确定去耦电容的结构(电容的寄生电感与其结构关系密切),再用试验的方法确定容量。
2.2 电源滤波器的钓自谐振频率
在交流电源进线与电源变压器之间设置电源滤波器是抗emi的常用措施之一。常用的电源滤波器如图2所示。人们一般对去耦电容的自谐振频率问题比较注意,实际上电源滤波器也有自谐振频率问题,处理不当,同样达不到预期的目的。
对图2所示的滤波器,分析可知,当电感的电阻rl很小时,自谐振频率分别为:
设计电源滤波器时,必须使滤波器的自谐振频率远小于噪声频率。处理不当.不仅不能衰减噪声,反而会放大噪声。
例如[8]图2(a)所示的滤波器,如果取l=1 mh,rl=1欧姆,c=0.47 uf(这也是许多资料上推荐的参数),可算出f0=5.2 khz。而emc测试中的快速脉冲群频率为5.0khz(2kv)或2.5khz(4kv),5.0khz刚好谐振,2.5khz也不会被衰减,如图3所示。这说明滤波器中元件参数选取不当,可能根本起不到提高emc性能的作用。
3.电容结构的选择
从理论上讲,电容的容量越大,容抗就越小,滤波效果就越好。一些人也有这种习惯认识。但是,容量大的电容一般寄生电感也大,自谐振频率低(如典型的陶瓷电容,0.1 uf的fo=5mhz,0.01ulf的fo=15mhz,0.001uf的f0=50mhz),对高频噪声的去耦效果差,甚至根本起不到去耦作用。分立元件的滤波器在频率超过10mhz时,将开始失去性能。元件的物理尺寸越大,转折点频率越低。这些问题可以通过选择特殊结构的电容来解决。
贴片电容的寄生电感几乎为零,总的电感也可以减小到元件本身的电感、通常只是传统电容寄生电感的1/3~1/5,自谐振频率可达同样容量的带引线电容的2倍(也有资料说可达10倍),是射频应用的理想选择。
传统上,射频应用一般选择瓷片电容。但在实践中,超小型聚脂或聚苯乙烯薄膜电容也是适用的,因为他们的尺寸与瓷片电容相当。
三端电容能将小瓷片电容频率范围从50mhz以下拓展到200mhz以上,这对抑制vhf频段的噪声是很有用的。要在vhf或更高的频段获得更好的滤波效果,特别是保护屏蔽体不被穿透,必须使用馈通电容。
4电容容量的选择
在数字系统中,去耦电容的容量通常按下式估算:
其中:/xl为瞬变电流;av为逻辑器件允许的电源电压变

编译器通常会怎么去处理使用volatile修饰的变量呢?
33430G系列高功率LED直流电子负载的特性及应用范围
传感器已成为可穿戴设备关键装置,精准延伸“第六感”
瑞芯微CEO励民:国产芯片的发展历程
浅谈三菱系列不得不知的四个高频问题
电容在EMC设计中的应用技巧
瑞萨电子以大约67亿美元的价格收购IDT ,加强与英伟达及英特尔在自动驾驶技术领域的竞争
BOE(京东方)携手民生银行打造智慧银行体验店
小米是国产又一骄傲? 小米推出的自研发芯片如何呢?
轻松应对考勤门禁管理难题,人脸识别终端来帮忙!
差示扫描量热法测定富锌底漆中的锌含量
人工智能赚钱难 科大讯飞2016年利润下降
特斯拉开启人工智能神经网络的序幕
华为P10上市四个月降到历史最低价,暴跌600只为给华为P11让路?
抢答器原理图分享
国内首例终端到终端低轨卫星通信测试成功
微气象监测系统护航变电站安全
存储系统IOPS设计需解决的问题及服务功能
华微电子荣获2023小米全球核心供应商“合作共赢”奖
使用PlatformIO对Arduino UNO和STM32板进行编程