如何为设计人员选择优化的CSA

测量系统中的电流是监测系统状态的一种基本而有效的工具。随着科技发展,电子或电气系统在性能提升的同时,物理尺寸大大缩小,并降低了功耗和成本。每个电子设备都在监测自己的健康和状态,而这些诊断提供了管理系统所需的重要信息,甚至决定了其未来的设计升级。
系统中越来越需要测量大范围电流,从微小电流一直到几安培电流。例如,在以下情况下,确定系统中高动态范围的电流流动或消耗情况:
1、 睡眠/非活跃电流,以确定除正常运行外的总体负载性能和估算电池/电源功率。
2、 ate/测试环境需要处理从微小/低微安培级电流到安培级电流,这就需要进行研发或生产级的测试。
3、 生产车间环境,以发现生产问题(积聚在ic下的焊剂、不必要的焊料短路或开路),以及正常的操作功能测试。
4、 工业设备监测,开启和关闭期间的功耗可显示设备的健康状况,例如,监测设备的正常电流和泄漏电流,以确定其随时间推移的磨损情况。
在高达80v的高电压电平(共模电平)应用中,由外部的简单电流检测放大器(csa)(但为了使结构达到精度和准确性要求,集成电路的设计比较复杂)和检测电阻器组成的方案可以解决电流测量时的大多数问题。电流检测放大器目前具有出色的准确度和精度,满足实现微安级电流的要求,同时保持更好的信噪比(snr)性能,从而提供系统设计所需的测量分辨率。
然而,为设计人员选择优化的csa并不是一件容易的事情。有一些权衡因素需要考虑:
1、 可用的电源
2、 最小可检测电流(转化为器件的最小输入失调电压(vos))
3、 最大可检测电流(转化为最大输入检测电压(vsense))
4、 rsense上允许的功耗
由于差分电压范围由电流检测放大器的选择来设定,因此增加rsense值可以提高较低电流值的测量精度,但在较高的电流下功耗较高,这可能是不可接受的。另外,检测电流的范围也有所降低(imin : imax)。
降低rsense值更有利,因为它减少了电阻的功耗,增大了检测电流范围。降低rsense值可降低信噪比(可以通过计算平均值,取平均输入噪声来改善信噪比)。应当注意的是,在这种情况下,设备的偏移会影响测量的精度。通常,会在室温下进行校准,以提高系统精度,通过增加某些系统的测试成本来消除失调电压。
此外,输入差分电压范围(vsense)取决于电源电压或内部/外部基准电压和增益:
在任何实现高电流范围的应用中,目的都是在既定的精度预算下最大限度地扩大动态范围,这一般通过以下公式来估算:
大多数csa的vsense-range通常是100mv,输入失调电压约为10μv。请注意,如果选择vsense_min作为10xvos系数,则在未校准系统中,最多可得出30年±10%的误差。同样,如果选择100xvos,则可以达到±1%的误差范围,但动态范围会缩减到20年。因此,在动态范围和精度之间存在一个权衡:收紧精度预算会减少vsense_min所决定的动态范围,反之亦然。
有一点需要注意,在csa + rsense系统中,rsense(容差和温度系数)通常是系统总精度的瓶颈。与电量计、带集成芯片电阻器的csa、使用运算的差分放大器的分立式器件实现等其它替代方案相比,它简单、可靠且成本合理,仍然是行业中监控/测量系统电流的有效做法。也有更高级别容差和温度系数检测电阻,只是价格比较高。应用在温度范围内的总误差预算需要与rsense产生的误差相当。
无电阻检测解决方案
对于需要测量从几百微安到几安培电流的更高动态范围应用,下方图1所示的基于adi集成式电流检测器件(u1)是非常有用、有效的解决方案。该解决方案满足以下条件:
1、 集成式检测元件(无电阻) 
2、 超过40年的电流检测动态范围
3、 电流输出功能(与160ω load一起提供0-1v的vout,与所有adc/微控制器电流输入实现方案兼容)。
图1:带有集成电流检测元件的2.5v至5.5v电流检测系统
代替外部检流电阻, 在vdd输入和负载(ld)输出之间配置集成检测器件,能够测量100ua至3.3a的系统负载电流(iload)。增益为1/500的内部增益块提供输出电流ish,即。在ish电流输出和接地间连接一个160ω电阻,可得到0v至1v的vish电压输出。
在负载电流为3a时,检测元件装置上vdd和ld之间的压降约为60mv(曲线图1),相当于仅有180mw的功耗,而在较低的电流值下,观察到的检测100μa范围的总误差在10%左右(曲线图2)。该方案在较高电流负载下功耗较小,在较低电流水平下仍能保持较好的误差预算,优于传统检测电路。因此,需要更大电流检测范围(最高可达3a)的应用可以从这个方案中受益。
曲线图1:内部检测元件上的压降与负载电流的关系
曲线图2:不同温度下ish输出的增益误差与负载电流的关系
具有扩展线路/输入电压的无电阻检测方案
图2是图1的输入电压范围扩展,其中u1的电源电压现在可以接受更高的线路电压,可高达6v至36v。齐纳二极管(d1)将vdd和pfet(m1)栅极之间的电压维持在5.6v。高压线路的大部分被m1吸收,m1的源电压钳位在与vdd输入电压相差大约4v-4.5v的水平,从而将u1的工作电压(vdd-vss)维持在正常工作范围内(曲线图3)。然后,这个m1的源电压为m2 pfet的栅极电压提供偏置。m2 pfet源电压处于vss (u1) + vth (m2)的水平,确保u1 ish输出在可接受的电压水平内。ish电流输出和r1相对于接地端产生0至1v的输出电压。
图2:带有集成电流检测元件的6v至36v电流检测系统
曲线图3:max40016电源电压(vdd-vss)与vline的函数关系
结语
通过使用adi的max40016无电阻检测解决方案,能够实现40年期的电流检测解决方案,工作范围亦扩大至36v。


AUTOSAR实战教程-通信协议栈介绍
凯盛科技8.5代TFT-LCD玻璃基板产线即将投产
车载网关产品介绍及使用案例
自动驾驶公司Momenta完成新一轮融资,估值创纪录
率先适配苹果MagSafe充电提示!倍思极简Mini磁吸无线充电器来了
如何为设计人员选择优化的CSA
可折叠持久的电池在医疗设备上的应用
瓷片电容有正负极之分吗,如何检测瓷片电容的正负极
ZCU106 评估套件产品描述
航空电子设计的PCB温度限制是多少?
GTE-XM折弯机激光保护装置的工作原理
东芝主体将变更为不涉及业务的小型控股公司
PLC编程语言有哪些特点和形式
口香糖手电筒diy制作图解
边缘计算的"军备竞赛"阶段 网宿科技当如何异军突起?
通过功能隔离断开接地环路减少数据传输错误
JANTX1N5770 Diode Array 60V 0.3A 10-Pin CFPAK Tube
GD32 MCU启动后如何运行到main函数
太龙照明:提升照明产品的创新科技属性,深化高科技领域的产业布局
认识FXGP与PLC