超低电阻表面贴装电流分流-Ultra-Low Resista

abstract: ultra-low resistance surface mount current-sense resistors seem like the ideal package. the physical design, a strap of metal, seems ideal, offering the lowest inductance possible. too often these resistors need some kind of resistor capacitor filter to limit the switching noise spikes. the problem is that the time constant for the shunt is the package inductance divided by the circuit resistance. consequently, the lower the shunt resistance, the longer the decay times.
ultra-low resistance surface mount current-sense resistors seem like the ideal package. the physical design, a strap of metal, seems ideal, offering the lowest inductance possible. too often these resistors need some kind of resistor capacitor filter to limit the switching noise spikes. the problem is that the time constant for the shunt is the package inductance divided by the circuit resistance. consequently, the lower the shunt resistance, the longer the decay times.
most ultra-low resistance surface mount components model like a piece of wire. the ideal circuit model is a resistor. many engineers deploy a four terminal kelvin sensing method to reduce errors in the ground plane. this does nothing for errors in the sense resistor itself. a 1-watt, 0.005ω surface mount resistor can have as much as 5nh of package inductance. when relying on the resistive element in a current measuring application, the circuit will have a limited frequency that can be defined as the point that the inductive reactance equals the shunt resistance, or where in the case shown in figure 1, the upper usable frequency limit is 160khz! the time constant for the rl network is l/r or 1us. for lower resistance values in the same package the problem only gets worse.
figure 1.
this problem can be corrected with the rc circuit as shown in figure 2. for a current-sense application we desire i(jw) × rs = v2. the circuit in figure 2 can be made to give this result by making the pole in the r1, c1 network cancel the zero in the shunt resistor.
figure 2.
since and it follows that by substituting v1 in the second equation we have since we desire we can modify the above expression as by simplifying we find that and by cancelling the two radicals we have the desired result. from here we make where
and choose with simplification we find that or which simplifies to so this model assumes the shunt is driven from a current source (high impedance) such as an inductor. it must be noted that the network in figure 2 does not provide high-frequency filtering, because the response is flat. a second pole must be added for high-frequency rolloff. driving the shunt with low impedance, such as a mosfet source, introduces a pole at v1. this pole occurs when or if desired, this pole can be cancelled by inserting a zero with r2. if further accuracy is required you might try using potentiometers for r1 and r2 with your best guess for c1.
figure 3.
measuring these ultra-low resistance components can tax the most expensive inductance bridges and network analyzers to the limit of their capacity. using high-frequency sweeps and maximum stimulus levels can help to bring these measurements up out of the noise floor. but circuit layouts, such as ground planes, can change the measured results.
in conclusion, it seems that the ideal current-sense resistor does not yet exist. as power-supply output currents continue to rise, these shunt resistors will probably be entering the sub-milliohm level very soon. along with increased operating frequency, caution for these second and third order effects is good advice.

电子白板术语全解
PoE-Tic 的移动互联网外联网 LiFi 接入 (MIELA) 系统
索尼WF-1000XM3无线降噪耳机上市,内置联发科定制方案!
自动化新变革:雅特力AT32 MCU与智慧共生
疯狂降价!iPhone 7、7 Plus中国突然爆发
超低电阻表面贴装电流分流-Ultra-Low Resista
粘合剂提高了电机的可靠性,大大降低了电机噪音
三星S8青春版发布!适合年轻人的手机来啦
数字通信的利与弊 数字通信系统作用
如何减少智能合约的gas消耗
一种新的WLAN企业视频无线传输优化
AMD R9 5900HX处理器“超频”跑分:单核超11代酷睿
德索为您介绍环境对高压连接器性能的影响
胶体蓄电池鼓胀原因及解决方案
全球芯片短缺,为什么会出现这种情况
长文解读华为成功密码,华为的上百亿学费
锡膏厂家浅谈一下焊锡丝的正确使用方法?
传感器在智能家居系统中的运用
铝电解电容的定义与组成
机构:Q3美国智能手机市场环比增长21% 出货3100万部