前言
led可以分成组件固定在两条平行导线上,包覆树脂密封成炮弹型,以及led组件直接固定在印刷导线基板上,再用树脂密封成表面封装型两种。
炮弹型的树脂密封不具备镜片功能,比较容易控制集光与集束;表面封装型直接将led组件固定在基板上,适合高密度封装,虽然小型、轻量、薄型化比较有利,不过辉度却比炮弹型低,必需使用反射器才能达成高辉度化要求;表面封装型主要应用在照明与液晶显示器的背光模块等领域。
本文要以表面封装型led为焦点,介绍表面封装用基板要求的特性、功能,以及设计上的经常面临的散热技术问题,同时探讨o2pera(optimized output by efficient reflection angle)的光学设计技巧。
封装基板的功能
表面封装型的led芯片通常只有米粒左右大小,基本结构如图1所示,它是将发光组件封装在印刷基板的电极上,再包覆树脂密封。
制造led芯片时印刷基板的功能之一,是将半导体device组件化,另外一个功能是让组件产生的放射光高效率在前面反射,藉此提高led的效率。
为提高led组件的发光效率,基板侧放射的光线高效率反射也非常重要,所以要求高反射率的基板。印刷基板镀金或是镀银可以提高反射率,不过镀金时类似蓝光领域低波长光的反射率很低,镀银时有长期耐久性偏低的问题,因此研究人员检讨使用led用白色基板。
led用白色基板要求400~ 750nm,可视光全波长领域具备均匀高反射率,反射率的波长相关性很强时,led芯片设计上会变成与设计波长相异的光源,因此要求在可视光全波长领域具备均匀的反射率。
白色基板的性能与特性
性能要求
表1是白光led的发光机制一览,它可以分成4大类。如表所示成为白光led的原光波长,全部偏向蓝光与近紫外低波长侧。一般类似环氧树脂基板的有机材料,紫外线等高能量光是最大敌人,光劣化极易造成环氧树脂变色,树脂的劣化使得可视光波长领域的反射率降低,外观上形成略带黄色,严重时甚至会变成茶色~灰色色调。
基板变色除了高能量光之外,热也是促进变色的原因之一,热会促进类似光劣化时的茶色系色调变色。此外在led制程上银胶以及金-锡接合时,基板会被加热到150~320℃,接着还需面临260℃的reflow高热。虽然芯片状led一直到装设在电子机器为止的热履历只有数秒~30秒,不过它必需在200℃左右的环境进出3~5次,基板受到该热履历影响加速变色,因此基板的热耐变色性非常重要,尤其是近年高辉度led组件的发热非常大,动作时芯片温度经常超过100℃,造成基板曝露在100℃高温紫外光与蓝光环境下。
基板一旦变色,led的辉度降低,从基板反射的反射光出现色调变化,其结果导致制品寿命变短,因此led用白色基板要求高反射率与低蓝光/紫外光树脂劣化特性,即使受热也不会变色等特性。
基板的机械特性要求
基板的机械特性与led的寿命无直接关系,而是涉及基板厚度精度与钻孔等加工性等技术性课题。例如加工基板sheet(大约100×150mm)表面同时进行数百个以上封装、树脂密封等工程时,基板sheet加工分别利用钻头钻床、铣床(router)、模具冲拔加工,钻头加工与铣床加工时,钻头(bit)的寿命与加工端面的毛边会成为问题,钻头的磨耗则与基板制作成本有直接关连,因此要求低钻头磨耗性的基板。此外,加工时发生的毛边会影响制品的良率,成为成本上升的主要原因,因此要求不会发生毛边,加工时能够抑制成本的基板材料。
组件的树脂密封使用注型与转写成型技术,基板的厚度精度太差时,树脂密封工程时模具与基板之间会出现间隙,进而导致密封树脂泄漏等问题,直接影响制品的良率,其结果反映在成本,因此板厚精度成为重要的特性之一。
提高耐候性、耐变色、反射率的技术
类似陶瓷等无机材料,不会因为加热与光线造成劣化、变色,它是非常优秀的材料,不过综合考虑基板、密封树脂、成本等问题时,环氧树脂至今还是成为广泛被采用封装材料,特别是环氧树脂硬化时不会产生副生成物,硬化后具备优秀的电气、力学、耐热性等许多特征。此外主剂与硬化剂可以依照预期的特性设计作任意组合。
印刷导线基板材料亦即贴铜积层板,它是混合“bisphenol a的glycidyl ether型”、“novolac的glycidyl ether型”环氧树脂等主剂,再与“dicyandiamide”、“novolac”等硬化剂混合,经过含浸glass cross制程后干燥,再与铜箔组合积层、加压、加热,制成所谓的“贴铜积层板”。图2是一般环氧树脂的化学结构;图3是积层板的制造流程。
如众所周知环氧树脂不适合当作led的基板材料,主要原因是环氧树脂拥有容易吸收紫外线的allele结构(图2),allele结构一旦受热会劣化、着色,没有allele结构的环氧树脂种类繁多,脂环式环氧树脂是典型代表。
图4是脂环式环氧树脂的化学结构,目前脂环式环氧树脂已经成为高辉度用led密封材料,脂环式环氧树脂具备高耐旋光性,反面缺点是耐热性较低,脂环式环氧树脂若应用在积层板时,可以形成高耐紫外线材料,不过受限于低反应性与黏度等问题,制造上还有许多技术性课题有待解决。
改善加热变色性的方法,分别如下:
(1)提高树脂的耐热性(提高玻璃转移点的温度)。
(2)添加防氧化剂。
(3)主剂的双重结合,降低容易氧化的部位。
有关第(1)项,一般认为可以透过环氧树脂与硬化剂的组合,可望获得改善。
有关第(2)项,研究人员开始检讨防氧化剂的添加量与相性。
有关第(3)项,采用脂环式环氧树脂,可以解决特性面的问题。
提高白色度与反射率
为了使基板白色化,必需将白色颜料添加于树脂内,该白色颜料的选择会直接反映在基板的反射率,因此它是非常重的项目。适合led基板的白色颜料必需选用「在可视光领域的反射率很高,即使低波长它的反射率也不会降低的材料」,二氧化钛比较接近上述要求,其它候补材料则有氧化锌、铝等等。基板若添加二氧化钛,可以提高初期白色度与反射率,缺点是热与紫外线会使有机部份迅速变色。此外若添加填充材料,基板的刚性会提高、热变形温度也随着变高,它可以提升芯片封装时的导线固定性与加工时的良率。
白色积层板材料
图5是日本业者开发的粘贴铜箔白色积层板“cs-3965h”的分光反射率。如图所示cs-3965h的分 光反射率,从近紫外(波长420nm)开始站立,在可视光全波长领域达到87%。如果基板变色时,在蓝光领域(波长450nm)的反射率会降低。
图6是“cs-3965h”经过加热与紫外线照射后的蓝光反射率变化特性,如图所示cs-3965h铜箔白色积层板的变色非常低,由于cs-3965h的初期反射率很高,热与紫外线照射后的反射率变化却非常低,非常适用于高辉度led的封装。
高功率led的散热设计
白光led已经开始应用在一般照明与汽车等领域,投入led的电力也从过去数十mw提高数w等级,因此发热问题更加表面化。
所谓热问题是指随着投入电力的增加,led芯片的温升造成光输出降低。有效对策除了改善芯片的特性之外,搭载led芯片的封装材料与结构检讨也非常重要。树脂封装方式是目前市场的主流,由于树脂的热传导率很低,因此经常成为影响热问题的原因之一,目前常用对策是将金属导入树脂封装结构,或是采用高热传导率陶瓷材料。
led高功率化必需进行以下检讨,分别是:
(1)芯片大型化
(2)大电流化
(3)芯片本身的发光效率改善
(4)高效率取光封装结构
其中最简单的方法是增加电流量,使光量呈比例性增加,不过此时led芯片产生的热量会增加。图7是电流投入led芯片时的放射照度量测结果,如图所示在高输出领域放射照度呈饱和、衰减状,主要原因是led芯片发热所致,为实现led芯片高输出化,必需进行有效的热对策。
接着介绍应用陶瓷特性的封装技术。
封装的功能
封装主要目的是保护内部组件,使内部组件与外部作电气性连接,促进发热的内部组件散热。对led芯片而言,封装的目的是使光线高效率放射到外部,因此要求封装材料具备高强度、高热传导性与高反射性。
陶瓷封装的优点
陶瓷材料几乎网罗上述所有要求特性,非常适合当作led的封装。表2是主要陶瓷材料的物性,如表2所示陶瓷材料的耐光劣化性,与耐热性比传统环氧树脂更优秀。
目前高散热封装结构是将led芯片固定在金属板上周围包覆树脂,此时芯片材料与金属的热膨胀差异非常大,led芯片封装时与温度变化的环境下,产生的热歪斜极易引发led芯片缺陷,造成发光效率降低、发热等问题,随着芯片大型化,未来热歪斜势必更严重。陶瓷材料的热膨胀系数接近led芯片,因此陶瓷被认为是解决热歪斜最有效的材料之一。
封装结构
照片1是高输出led用陶瓷封装的实际外观;图8是陶瓷封装的构造范例,图中的反射器电镀银膜,可以提高光照射效率 。图8(c)是应用多层技术,使陶瓷与反射器成形一体结构。
为了使发热的led芯片正常动作,必需考虑适当的散热系统,这意味着封装已经成为散热组件的一部份。接着介绍有关散热的处理方式。
封装与散热基板的功能
散热设计必需考虑如何使led芯片产生的热透过筐体释放到外部。图9是led lamp内部的热流与封装内侧理想热扩散模式。
如图9右侧实线所示,高热扩散性封装的内侧(p~q之间)温度分布非常平坦,热可以扩散至封装整体,而且还非常顺畅流入封装基板内,因此led芯片正下方的温度大幅下降。
图10是利用热模拟分析确认该状态获得的结果,该图表示定常状态温度分布,与单位面积时的单位时间流动的热量,亦即热流束的分布状况。由图可知使用高热传导材料的场合,封装内部的温差会变小,此时并未发现热流集中在局部,封装内部的热扩散性因而大幅提高。
陶瓷是由铝或是氮化铝制成,若与目前常用的封装材料环氧树脂比较,铝质陶瓷的热传导率是环氧树脂的55倍,氮化铝陶瓷的热传导率是环氧树脂的400倍。此外金属板的热传导率大约是200w/mk,铝的热传导率大约是400w/mk左右,要求高热传导率的封装,大多使用金属作base。
led芯片接合剂的功能
半导体芯片接合剂使用的材料有环氧系、玻璃、焊锡、金共晶合金等等。led芯片用接合剂除了高热传导性之外,基于接合时降低热应力等观点,要求低温接合、低杨氏系数等特性,符合要求的在环氧系有“添加银的环氧树脂”,共晶合金则有“au -20% sn”等等。
接合剂附着在芯片周围的面积几乎与led芯片相同 ,而且无法期待水平方向的热扩散,只能期望垂直方向的热传导性。图11是led芯片至封装背面的温度差热仿真分析的结果,如图所示封装使用氮化铝陶瓷基板,与接合部温度差,以及热传导性比添加银的环氧树脂还低的au-sn接合剂。
由于au-sn薄层化可以降低接合部的温度差,同时有效促进热的流动,因此业界普遍认为未来散热设计,势必要求接合剂必需具备高热传导性,与可以作薄层化接合等基本特性。
今后散热设计与封装构造
随着散热设计的进化,led组件厂商的研究人员开始检讨led lamp至筐体的热传导,以及筐体至外部的热传导可行性;组件应用厂商与照明灯具厂商则应用实验与模拟分析进行对策研究。
有关热传导材料,封装材料正逐渐从树脂切换成金属与陶瓷材料。此外led芯片接合部是阻碍散热的要因之一,因此上述薄形接合技术被视为今后检讨课题之一。
有关提高筐体至外部的热传导,目前大多利用冷却风扇与散热鳍片达成散热要求。不过基于噪音对策与窄空间化等考虑,照明灯具厂商大都不愿意使用热交换器,因此必需提高与外部接触面非常多的封装基板与筐体的散热性,具体方法例如利用远红外线在高热传导性铜层表面,形成可以促进热放射涂抹层的可挠曲散热膜片(film)。
根据测试结果证实可挠曲散热膜片的散热效果,比大小接近膜片的散热鳍片更高,因此研究人员检讨直接将可挠曲散热膜片黏贴在封装基板与筐体,或是将可以促进热放射涂抹层,直接设置在装基板与筐体表面,试图藉此提高散热效果。
有关封装结构,必需开发可以支持led芯片磊晶(flip chip)接合的微细布线技术;有关封装材料,虽然氮化铝的高热传导化有相当进展,不过它与反射率有trade-off关系,一般认提高热传导性比氮化铝差的铝的反射特性,可以支持led高输出化需要,未来可望成为封装材料之一。
印度电信:卫星公司 OneWeb 将在 18 个月内提供全球宽带服务
上海控安iTB系列:iTB-AUTO汽车信息安全检测平台
关于开关转换器输出浪涌的启动问题
村田RFID标签拥有哪些优势?
小米生态链公司搭上无线充电快车:小米MIX 2S无线充功能已经板上钉钉
深度分析白光LED的散热技术
当制造业的集中度不断提高 工业机器人产业的洗牌期也将随之到来
后备电源控制器LTC3350,可对串联堆栈进行充电和监察
电能表使用方法_电能表使用注意事项
两只PNP晶体三极管和四个电阻组成恒流源电路
Rambus 通过业界首款第四代 DDR5 RCD 提升数据中心服务器性能
AR技术在能源风电行业的应用
由LM4730/4731构成的电桥输出音频功率放大电路
可靠是汽车连接器的基本特征
康耐视图像读码器DataMan 503增强物流应用功能
网络安全成为工业互联网的发展重点
OPPOR11和小米5X对比评测:外形相似,配置相似,价格却差很远,换你你选谁?
电瓶修复—关于把电充好你能想到的?
2023好用的智能手表有哪些?
中国移动的固网宽带用户数已破2亿大关