基于实时操作系统μc/OS-II与SPCE061的嵌入式多传感器测控系统

1 引言
随着嵌入式系统的广泛应用,原来单一传感器的嵌入式系统逐渐向嵌入式多传感器系统发展。由此提出了多传感器任务调度分配的问题。本文移植典型的实时嵌入式操作系统μc/os-ii到spce061高性能处理器平台,结合工程项目对于温度湿度氧浓度的要求,构建了实时嵌入式多传感器测控系统。
2 系统硬件设计
2.1 单片机系统设计
系统硬件电路原理框图如图1所示,主要由spce061a单片机、温湿度传感器、氧浓度度传感器、lcd显示电路、键盘电路、rs232通信电路、时钟电路等组成。spce061a是一款基于μ'nsp内核的16位单片机。
图1 系统硬件电路原理框图
2.2 传感器电路设计
温度检测电路选用dalls公司生产的三线式数字温度传感器ds18b20。该器件只有3个引脚,不需要外部元件,一条数据线进行通信。该电路的检测温度范围设计为0~+50℃;精度为0.5℃;用9bit数字量来表示温度;每次将温度转换成数字量需200ms。在单总线工作方式下,允许一条信号线上挂接多个ds18b20,ds18b20都有唯一的rom代码。在多点温度测控系统中,rom代码是识别和操作ds18b20的基础;无论读取还是选择对某一个传感器进行操作,spce061a必须发送64位rom代码。
本系统用3块ds18b20来实现对环境温度的检测,保证在被测环境范围内,温度分布均匀,测量更加准确,使用时将ds18b20放置在被测环境的不同位置。获得温度信息时,先由spce061a的iob15脚发送一个1ms的复位脉冲,以使ds18b20复位后将向spce061a 发送一个回应脉冲,spce061a接到回应脉冲后将发送读ds18b20序列号的读rom命令,以分别读取三个ds18b20的序列号;然后,spce061a再发出定位命令以选择在线的ds1820并进行温度转换。当温度转换完成后,spce061a的iob15脚会发送ds1820的存储命令,从而完成温度信息数据的转换和读取。
2路氧浓度检测选用 dw-02型氧浓度传感器,主要特点是体积小、响应快、线性好、温漂小等特点,稳定。主要技术指标: 响应时间≤30秒(满量程的90%) ;测量范围0~50% o2 ;温度系数>0.003% o2/℃ ;线性误差+0.2%~-0.1% o2 ;使用温度范围-20℃~+50℃ ;输出电流1.1ma+15% 。 本系统测定的含氧量不得低于4.5%。
由于是冬季,当储藏室环境温度高于14℃或湿度大于95%rh、或氧浓度低于4.5%设定值时,不能直接将冷空气送入储藏室,必须将室外空气加热到12℃送入,否则,会造成红薯受冷变质。三个参数中,最主要的是温度值,然后是湿度。继电器电路的工作情况如表1所示。
表1 继电器控制电路工作情况
2.3 键盘、显示电路及通信接口设计
系统键盘电路由3根线连接至spce061a的ioa0~ioa2组成,它们分别是功能键,增加键,减少键,用来实现温、湿度氧浓度的上、下限及控制时间的设置功能。测控仪采用ht1621驱动128段lcd显示器,用于显示现场的温、湿度值、o2浓度以及故障和报警状态。ht1621是一个128(32×4)段、内存映射、多功能、i2c接口的lcd驱动器。
3 软件设计
3.1 系统任务分配
为了充分发挥操作系统在任务调度、任务管理、任务通信、时间管理和内存管理等方面的优势,首先必须根据需要实现的功能,合理的划分任务和分配任务的优先级。按温湿度测控系统所要求实现的功能,将整个系统划分为并行存在的任务层和中断程序。μc/os-ii嵌入式实时操作系统中的任务状态转换如图2所示。
图2 μc/os-ii任务状态转换示意图
多任务系统在运行时每个任务好像独立占用cpu一样,因此系统必须为每个任务开辟一块内存空间作为该任务的任务堆栈。该堆栈的作用是保存任务被切换前时cpu各寄存器的值以及系统堆栈的数据。进行任务切换的步骤如下:①将当前任务cpu所有的寄存器压栈;②将cpu系统堆栈的数据全部拷贝到当前任务的任务堆栈中;③ 得到下一个处于运行态优先级最高的任务的任务堆栈的指针;④ 恢复下一个任务的cpu寄存器的值;⑤ 恢复下一个任务的系统堆栈中的数据;⑥ 通过中断返回指令或函数返回指令,间接修改pc寄存器的值来进行任务切换。
任务切换方法:凌阳space061a单片机有r1-r5 五个通用寄存器,还有1个sr(cpu状态寄存器),再加上pc,总共有7个cpu内部寄存器在任务切换时需要保存。μc/os-ii系统调用osctxsw( )来实现任务的切换。在实际系统中,每个任务都是无限循环的,分别实现某一特定的功能,由μc/os-ii内核来进行调度。系统监视任务主要完成系统可靠性的监管;数据采集任务主要完成温度湿度氧浓度的检测和a/d转换;数据处理任务主要完成采集数据和设定数据的比较判定;数据输出任务主要完成数据输出给lcd、通过rs232传输给主机、以及输出控制信号给继电器电路,完成通风、加热、加湿等功能;显示任务主要完成温度湿度氧浓度参数的显示。系统主程序任务流程图如图3所示。
图3 系统主程序任务流程图
3.2 μc/os-ii的移植
μc/os-ii是一种专门为微控制器设计的抢占式实时多任务操作系统,它以源代码的形式给出。其内核主要提供进程管理、时间管理、内存管理等服务。系统最多支持56个任务,每个任务均有一个独有的优先级。
μc/os-ii的软件体系结构如图4所示。从图4中可以看到,如果要使用μc/os-ii, 必须为其编写os_cpu.h、os_cpu_c.c、os_cpu_a.asm三个文件。这三个文件是与芯片的硬件特性有关的,它们主要提供任务切换与系统时钟的功能。其它文件用c写成,它们为系统提供任务管理、任务之间通信、时间管理以及内存管理等功能。
图4 μc/os-ii 软件体系结构示意图
μc/os-ii系统时钟:以凌阳spce061a单片机的tmb2时基信号作为系统时钟,每经历一个时钟节拍的时间将产生一次中断,在中断服务子程序中会调用ostickisr()函数。
移植工作的主要内容:用#define 设置一个常量值(os_cpu.h);声明10个数据类型(os_cpu.h); 用#define 声明3个宏(os_cpu.h);用c语言编写6个简单的函数(os_cpu_c.c);编写4个汇编语言函数(os_cpu_a.asm)。
4 结论
μc/os-ii rtos是当今嵌入式应用的热点之一,应用rtos提高了测控系统系统的可靠性、实时性,降低了研发周期。本文基于μc/os-ii构建的测控系统应用在漯河农业局2000万公斤红薯储藏保鲜工程项目中,完全达到了设计的控制指标:温度10-14℃±0.5℃ ,湿度80—95%rh±2%,氧浓度≮4.5%。降低了红薯因为温度湿度氧浓度不正常造成的变质,完好率100%,与不使用本系统的仓储对比减少损耗25%,约500万公斤,直接经济效益500多万元,同时也取得了较好的社会效益。经试验,温度测定范围可以达到-20-85℃±0.5℃;湿度20—98%rh±2%;氧浓度≮1.5%。所以,该测控系统具有较广的应用前景。

轻薄手机的未来在哪里?
比科奇与博葳通实现小基站BBU LTE软件对接并完成满速率、超容量商用测试
华为凤凰引擎首次商用
Netgear新推出的夜鹰网将以更低的价格提供Wi-Fi 6
苹果13promax512g预计价格多少
基于实时操作系统μc/OS-II与SPCE061的嵌入式多传感器测控系统
针对低功耗的设计
中国电信与中国联通将共建共享5G无线接入网
阿里云助推智造服务业转型升级 发布飞象IIoT平台展IIoT领域的雄心
PCB原型的基础知识
示波器探头类型和用法介绍
虹云工程示范应用将投入使用,未来无线网络将覆盖全球
英创信息技术ISA总线扩展定时器的应用介绍
紫光展锐受邀参加第三届面向Rel-19及未来的Sidelink技术演进研讨会
Redmi K50S Pro将搭载骁龙8+处理器
变频器的应用实例(一)
BL120PN Profinet和Profibus DP转Modbus网关:实现设备集成与网络扩展
ST EVALSPEAr320PLC MII自动模式评估应用方案
虚电路,虚电路的特点,虚电路的原理是什么?
Diodes推出最先进的数据传输线瞬态电压抑制器(TVS)DESD3V3Z1BCSF-7